NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

TRANSPARENT DETECTION OF QOS _
VIOLATIONS FOR CONTINUOUS APPLICATIONS

by
Kendal V. Polk

June 2000

Thesis Advisor: Cynthia Irvine
Second Reader: : Timothy Levin

Approved for public release; distribution is unlimited

brIe QUALITY 1y

T 20000818 048

REPORT DOCUMENTATION PAGE Fom Approved OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES
June 2000. COVERED
Master’s Thesis
4. TITLE AND SUBTITLE Transparent Detection of QoS Violations For | 3- FUNDING NUMBERS

Continuous Applications

AUTHOR(S) Polk, Kendal V.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING
AGENCY REPORT NUMBER

11.

SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a.

DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words) Resources Management Systems have the task of determining the structure,
resource allocation, and scheduling of applications within their scope. One such system is the Management System for Heterogeneous
Networks (MSHN) which uses its Client Library to gather knowledge of its environment. The Client Library is wrapped around each
application to gather application status and resource usage information by intercepting and interpreting system calls. In previous work,
the Client Library was utilized to provide status of an application at the end of the application’s execution. This research focuses on a
method to gather QoS information on continuous applications within mission-Critical systems, while applications are running rather
than after execution, without modification to the application’s source code.

The Client Library has been modified to provide application execution information that is evaluated and compared against
user-defined specifications. Any QoS violations result in a notification. This is an indicator for MSHNs scheduler to take corrective
action such as adapting to use different resources or data formats.

When wrapped applications are used in conjunction with continuous monitoring, overhead is increased, which may be acceptable
if transparent QoS monitoring is essential.

14.

SUBJECT TERMS Quality of Service, Resource Management System, Desiderata, MSHN, Wrapper, 15. NUMBER OF
QoS Violations, Client Library, Resource Monitoring PAGES 122

16. PRICE CODE

17.

SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- | 20. LIMITATION
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

i1

Approved for public release; distribution is unlimited

TRANSPARENT DETECTION OF QOS VIOLATIONS FOR CONTINUOUS

APPLICATIONS

Kendal V. Polk
Captain, United States Army
B.S., United States Military Academy, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 2000

Kendal V. Polk

Approved by: /é}% F) &HW

Dt Cynth1a Irvine, Thesis Advisor

Timothy Levip/ Second Reader

) C Do

Dan Boger, Chai
Department of Computer Science

1ii

v

ABSTRACT

Resources Management Systems have the task of determining the structure,
resource allocation, and scheduling of applications within their scope. One such system
1s the Management System for Heterogeneous Networks (MSHN) which uses its Client
Library to gather knowledge of its environment. The Client Library is wrapped around
each application to gather application status and resource usage information by
intercepting and interpreting system calls. In previous work, the Client Library was
utilized to provide status of an application at the end of the application’s execution. This
research focuses on a method to gather QoS information on continuous applications
within mission-critical systems, while applications dre running rather than after
execution, without modiﬁcation to the application’s source code.

The Client Library has been modified to provide application execution.
information that is evaluated and compared against user-defined specifications. Any QoS
violations result in a notification. This is an indicator for MSHNs scheduler to take
corrective action such as adapting to use different resources or data formats.

When wrapped applications are used in conjunction with continuous monitoring,
overhead is increased, which may be acceptable if transparent QoS monitoring is

essential.

vi

TABLE OF CONTENTS
I. INTRODUCTION
A, BACKGROUND.......cootiitieeee e
1. Quality of Service (Q0S).....uueuweeeeeereeeeeeeeeereeeeeeeeeseeeesereseoso.
2. Commercial Off the Shelf (COTS).oeummemereremeeeeeeeeeeeeeeeeo
3. Resource Management Systems (RMS)ooeeeeeeeeeoreemeerseereresr.
B, MOTIVATION ..ottt e eeeseeees e
C. SCOPE OF THE THESIS «..ccovuteteeeeececeteeeeeeeee e s ees oo
D. ORGANIZATIONccovreimmuruemriurremeesseeseeseeseeseseseeeessessesseeseses e

Al AEGIS .. e
B, DESIDERATA....cu oottt
L. OVOIVIEW. ... e

A~

......................
......................

......................

ACCUTACY ...ttt eee e v e s s s e e
PrECUSION. ..ottt ee s es e

......................

......................

......................

......................

......................

2. MSHN INIEZGIAHON ...
. SUMMARY ettt ee e e

V. EXPERIMENTS AND RESULTS

......................

......................

......................

A. EXPERIMENTAL DESIGN ...cuutmeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeeeooo
1. Violation DeteCtioneeemeeeoo
2. RMS EXCCUTION ..o

vii

......................

......................

......................

......................

2. Effect of Monitoring on Path Latency
VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONotteiiieieeeerereeereerrensmesssaasessssssmsssssstsnsmsnnnerasens
B. FUTURE WORKooiiiieeeeienienieeirenreenseseeeneseessesensessnsssennes
1. Expansion of Existing MSHN Wrapper Functionality
2. Integration of Windows Application Monitoring
3. Intergration of TPMS into MSHNcoomminimennnnene

APPENDIX A. DATABASE DESIGN

51

.................................. 51
.................................. 52
...................................... 52
.. 53
.................................. 53

55

A. SPECIFICATION DATABASEeovetieeeeieeeennrereeeevveeeesesesnnenes
B, PATHDATABASE ...eeeeeeeeeeieeeeeeeeeeieeieeeeeseeeeseesessesersvsssasnecseeass

APPENDIX B. TMPS MODULE SPECIFICATION

A. SPECDB MODULEcooottttteerieeceeeesesneeeeesesaeesennessissnesesasnns
B. PATHDB MODULEuotiieiiieeeieeeeeireeeesenneceeasessssissesnnnsenas

L. PAIADB.R ...ttt

2. pathDBINStance.f.................ccoccevecmsunceeieniniesensirenacnncns
C. PATHTIMER MODULE......cetittiieiieeeeiirneenereeeeeseeresenienmessnssnsnenns
D. EVALUATE AND ALERT MODULE......cccccotmeirennneiinneicninnennans
E. CONTROL MODULE.....ccotriiiiertieeeeueeeeesesnreceeesneeessscessnsssenns

APPENDIX C. TPMS SOURCE CODE

.................................. 55
.................................. 56

59

.................................. 59
.................................. 60
.................................. 60
.................................. 61
.................................. 62
.................................. 62
.................................. 62

65

A. SPECDB MODULEoutiiiiieeciteeeeereeiinereeeeteseenreessssnnssnneees
B. PATHDB MODULEuuviieciieieceieeienereeesesecesesseesesnssssssnsseeas

1. PathDB Source Code........uueveereeeeeeaeeaeeeeereeeeceeeecennees

2. PathDBInstance Source Code............ccaueeeneevceeirnisiannnns
C. PATHTIMER MODULEccocctimiirieenriirinnrenneensenseeseessasassees
D. EVALUATE AND ALERT MODULE......cccocotveeeeneeeeneneesenneeenans
E. CONTROL MODULE......ccstrueieeeieeeeinrreeeeessereeaesseeessnsessssnnesssses

LIST OF REFERENCES

.................................. 65
.................................. 74
.................................. 74
.................................. 86
.................................. 93
.................................. 94
.................................. 96

99

INITIAL DISTRIBUTION LIST

viii

O

'LIST OF FIGURES
Figure 1. QoS Specification Hierarchy [CHAT98] 2
Figure 2. Example Resource Management System 5
Figure 3. AEGIS Architecture [PERR98] 10
Figure 4. Logical architecture management software [DESI98] 14
Figure 5. Desiderata software for resource and QoS management [DESIYS]........... 15
Figure 6. Precision vs. Accuracy 19

Figure 7. The Globus resource management architecture, showing how RSL
specifications pass between application, resource brokers, resource co-

allocators, and local managers. [CZJA97] 24
Figure 8. ERDOS System Architecture [CHAT98] 26
Figure 9. ERDOS Middleware QoS Architecture [CHAT98] 27
Figure 10. MSHN Conceptual Architecture [HENS99] 29
Figure 11. Timestamp Sequencing [DESI98] 33
Figure 12: TPMS Representation in Regards to MSHN 36
Figure 13: PathDB Module Initialization 37
Figure 14. DynBench Application Communications [DESI98] 44
Figure 15. DynBench Overhead in Desiderata and TPMS 49
Figure 16. Specification Database in Memory 56

ix

LIST OF TABLES

Table 1. Timestamp Sequencing

Table 2. Deadline Derivation

Table 3. DynBench Execution Data

Table 4. Specification Database

Table 5. Path Database
Table 6. Path Database Instance Definition

Xi

38
45
48
55
57
57

Xii

ACKNOWLEDGEMENT

First, I thank my supportive family for their understanding and patience. I then
thank Dr. Cynthia Irvine and Tim Levin for their help, knowledge and expertise. I could
not have done it without them. And finally I thank all the students I met here for their

friendship and kind words.

Xiii

Xiv

L. INTRODUCTION

Determining whether distributed, real-time applications, such as those for
Command and Control, need to be re-scheduled or re-configured for different resource
allocations requires that a resource management system (RMS) quickly detects, or better
yet predicts and reacts to predicted violations of Quality of Service (QoS) requirements.
Current resource management systems require that the source code be modified to report
such violations to the RMS. Unfortunately, this often precludes introducing Commercial
Off the Shelf (COTS) or legacy software into such systems, even if the COTS or legacy
algorithms are superior, because source code is either not available or would require a
very expensive license. This thesis examines an approach for detecting QoS requirement
violations in Resource Management Systems (RMS), which does not require source code

access or modification.

A. BACKGROUND
1. Quality of Service (QoS)

QoS is a term used by many research groups in many different contexts. Before
defining .QoS, a definition of service is necessary. “Service is work done on behalf of
someone, whom we denote as a client.”[CHAT98] For example, an end-to-end
communication application is a service executed for the end user. This service can be
executed to varying degrees of quality. Quality of Service is the functionality that a

client receives from a service executed at a given level of quality. The client receives a

certain level of functionality if the service provides a certain level of quality. Service
specific, QoS parameters define this level of quality [CHAT98].

QoS parameters or specifications can be grouped into metrics or policies. Metrics
specify QoS parameters that are quantifiable, whereas polices define system actions based

upon system state. The following chart presents a sample QoS hierarchy:

QoS Specifications

N

Metrics Policies
TN e T
Security Performance Im;o?‘:;‘:::e Availability M;r;al%ceir:sem
/N

Timeliness Precision Accuracy Combinations

Figure 1. QoS Specification Hierarchy [CHAT98]

Normally when researchers discuss QoS they focus on performance metrics.
Timeliness is generally a representation of the time required to execute a given piece of
work. Example timeliness parameters are total time (begin to end), start time
(earliest/latest) for a task, and deadline (earliest/latest) for a task to complete. Precision
relates to data volume quantities, and can be represented as the precision of content for
input and output data, and the representation for input and output data. Errors introduced
into data by a service define accuracy. Accuracy parameters relate to the content for
input and output data and to the representation for input and output data.

[CHAT98][CLARKI8]

2. Commercial Off the Shelf (COTS)

Government policies have recently undergone a change with respect to the
acquisition of computer systems. There has been a shift in the DoD to evaluate the use of
COTS products in a new system prior to its development [SLED98]. The rising costs of
system development and shrinking budgets necessitate the interest in less costly COTS
technology. “In systems where the use of existing commercial components is both
possible and feasible, it is no longer acceptable for the government to specify, build and
maintain a large array of comparable proprietary products.” [SLED98]

Government procurement requires precision to ensure cost effectiveness and
interoperability. COTS are referred to as “commercial items” under the Federal

Acquisition Regulations (FARs) [FAR 96] and follow these general characteristics:

. exists a priori,
. available to the general public, and
. can be bought (or leased or licensed) [OBER97]

Those implementing systems using COTS components must realize that there are
issues with system distribution, interface standards, and legacy system reengineering that
affect a COTS-based distributed implementation. Supportability over the equipment or
software’s lifetime is also a key issue and must be analyzed on a case-by-case basis.
“Each system or equipment must be scrutinized more closely than MIL-SPEC programs

because of the dynamic commercial infrastructure, and technology turnover.”[VIRT98]

There are seven major documents that guide the federal government, and
especially the DoD, on the use of commercially available information technology
products. Their focus on the use of commercial IT products are summarized as follows

[OBER97]:

e Clinger-Cohen: “increase acquisition and incorporation of commercial
technology”

e FAR: “acquire commercial and nondevelopmental items (C/NDI) when
available to meet the needs [of the program]” (The FAR also requires primes
and subcontractors at all tiers to incorporate C/NDI to the maximum extent
practical.)

e DoD 5000.1: “If use or modification of existing...equipment will not meet the
need, give top priority to...commercially available equipment.”

e DoD 5000.2-R: “Consider C/NDI [to be] the primary source of supply”
o Joint Technical Architecture (JTA): “specifies a set of performance-based,

primarily commercial, information processing, transfer, content, format and
security standards.

e Defense Information Infrastructure (DII) Common Operating Environment
(COE) : “consists of an approach for building interoperable systems; a
collection of reusable software components; a software infrastructure for
supporting mission area applications”

Each of these policy documents has the common thread that they mandate or encourage

the use of commercial items, standards (non-governmental), technology, and/or best

practices.[OBER97]

3. Resource Management Systems (RMS)

QoS is easy to provide to applications if these applications do not share resources.
Broadcast and cable TV providers are able to guarantee a certain level of quality of
service because each channel is assigned a certain frequency (i.e. no resources are
shared)[CHAT98]. In a computing environment where resources are scarce, a degree of
QoS 1s desired, and multiple services utilize these same resources, a resource
management system is needed.

“Resource Management determines what service to perform and where and
when to perform the servicelCHAT98].” What determines the structure of the service;
where determines which resources to allocate to each service; when determines the

schedule of how to execute a set of services on a resource. A sample RMS is below:

Schedule

"

Output

Feedback

asEEEssERIREERIRSRBNEENRR P

Figure 2. Example Resource Management System

In this case the client requests a service from the RMS scheduler and, based upon
the model, which is a database that contains information about the resources necessary to

execute the service (what and where), the scheduler determines when to execute this

service based upon current resource status and QoS parameters. Once execution has
begun the task handler provides feedback to scheduler and the model to enact any

necessary schedule changes. This is known as adaptive resource management.

B. MOTIVATION

The research performed in this thesis provides a basis for efficient QoS
measurement in a distributed, heterogeneous computing environment. Specifically, this
thesis research will focus on identifying the following: QoS requirements in this type of
computing environment, the data that need to be captured/sent to a QoS measurement
mechanism, and the use of this data to detect violations of these requirements by COTS
applications. QoS violation detection techniques that can be applied to a broad range of
software will allow more COTS applications to be introduced into future real-time,
warfighting systems, perhaps enhancing speed and interoperability.

The DARPA-sponsored Management System for Heterogeneous Networks
(MSHN) project, currently underway at NPS, is a subcomponent of the DARPA
QUORUM program. The goal of this project is to provide Quality of Service (QoS) for
both operational and planning applications that are able to use multiple sets of resources,
while accounting for priorities and environments that change dynamically. The RMS for
MSHN is equipped with algorithms to maximize overall benefit rather than benefit to a
particular user. Thus an individual may not get everything he wants, i.e. “ideal”, but may
get “pretty good” instead. Currently, most systems implement QoS violation detection by

directing that the monitored applications pass messages to the RMS. This method is not

applicable to COTS or legacy software that cannot be retrofitted to pass these types of
messages. Techniques must be developed to detect and report QoS violations without the
modification of source code. We call this transparent detection of QoS violation. The
MSHN CL was developed to provide such transparent detection. However, CL only
measures QoS at the end of a user’s application. This has two problems. First, an RMS
does not have the opportunity to adapt if QoS information is received after task
completion. And second, this mechanism cannot be used with tasks that run continuously

(e.g. sensor tasks).

C. SCOPE OF THE THESIS

This thesis research focuses on the transparent detection of QoS violations to
enable timely system re-configuration (adaptation). Initially, QoS requirements for real-
time, distributed applications will be identified and characterized based upon user criteria.
Secondly, an experimental analysis of transparent QoS detection overhead and timeliness
will be performed on the continuously executing DynBench applications from the
Desiderata RMS. Conclusions generated from the analysis will give focus to future

experiments and modifications of current techniques for QoS detection.

D. ORGANIZATION

Chapter I discusses the QoS requirements of a real-time distributed system with a
focus on the applications Desiderata and AEGIS. Chapter III presents current Resource
Management tools and a detailed overview of the MSHN project. Chapter IV describes

the modification to MSHN’s monitoring library that will enable dynamically adaptable

QoS violation monitoring. Chapter V discusses the experiments conducted to determine
the timeliness and overhead of this approach to QoS detection. Conclusions from this
thesis research and suggested future work that this research may lead to are described in

Chapter VI

II. REAL-TIME, DISTRIBUTED APPLICATIONS

This chapter gives an overview of real-time, distributed applications and their
QoS requirements. Section A focuses on the AEGIS system, its components and
functions. It will analyze the system progression and applicability to command and
control situations. Section B focuses on the Desiderata project, its application to real-
time distributed systems, and its use of dynamic paths. Section C presents and analyzes

the QoS requirements of real-time distributed applications.

A. AEGIS

An early example of a real-time distributed application is the AEGIS Weapon
System developed for the United States Navy in the 1970’s. Its purpose is to defeat
hostile anti-ship cruise missile technology. Its search and track space envelope covers
over 100,000 square miles. It utilizes a network operating system that allows its four
main systems to “talk” to one another to detect, track and engage targets. The systems are
[PERR98]:

e Command and Decision Module-- Interface between man and machine.
e Weapon Control System-- Controls the processes that engage weapons.
e Radar System--Controls radar to search for and track/evaluate targets, missiles.
e Display System--- Supports Large Screen Display processing.
For a detailed description of all components see [PERI98]. The following is a graphical

representation of how the systems interact:

SECS T 3
= e
k| ewd Eectronic & @us

F
)
€,
2

: Warfare Systen| NULKA
Ar/surt P (5L0%)
Radar an
Systenns 1 | Weapon System
i s&l MK34
I Missile
. LT TR Fire Control
2 Identification ’ —
2:_)) Systers (IFF) : L 3 System @
Vertica Tomahawk
- i
B g — Launchi mz Blks
< Sensing |—— ESSM
U | sysemisiaa —
Tomahawk ||
Navigation System —_
System
X\\ (NAVSS!, WRN-6)

= [o =
@

System
R | Underwater Mark 45
LEGEND ' Fire Cortrol andso
re—— Digital Interface Torpedo
- T ™ = - VikoWterace Lapsvkm—| N [~ N
70 - aws camporents
5o umrom

Figure 3. AEGIS Architecture [PERR9S8]

As this system approaches its third decade, developers are attempting to integrate the
computing advances that have occurred since its inception. Faster hardware, networks,
and targets have required developers to modify current scheduling algorithms and
software to take advantage of real-time, heterogeneous computing environments.
Determining and implementing these modifications are not problems specific to the U.S.
Navy but to all of the DOD, which is why projects are being funded throughout the

country to address them. One such project is Desiderata. [DESI98]

10

B. DESIDERATA
1. Overview

Desiderata is focused on the development of next-generation, distributed systems
for combat. These types of systems have strict QoS objectives. They must contain some
underlying mechanism enforcing a reliability policy, react to threats in a timely manner,
and always be available in hostile environments. Resource usage must be efficient and
scalability must be possible to “address the ever-increasing complexity of scenarios that
confront such systems [DESI98].” To provide QoS, Desiderata focuses on the following:

® QoS Specification

¢ QoS metrics

e dynamic QoS management, and

e benchmarking
The name Desiderata is derived from its applicability to Dynamic, Scalable, Dependable,
Real-Time systems. Desiderata is a testbed project for the US Navy to enhance QoS
management technology in a shipboard distributed computing environment. This
technology includes its own specification language and QoS management programs that
support dynamic path-based systems. During application execution the QoS management
system benchmarks application information which is used to facilitate resource
management.

2. Dynamic Paths

A dynamic path is an entity used in Desiderata’s QoS assessment to identify the

start and end point of a series of connected actions. Each action is usually performed by a

11

separate application. These paths may have resource or timing constraints that are used to
determine adherence to QoS specification. As with many air defense type systems,
Desiderata begins with the threat assessment path. These actions include sensor (radar)
input, filtering, filter management, and evaluation. The information passed along the path
is considered dynamic because the sensor’s input may range from a few to several
thousand tracks and cannot be determined in advance. This type of path is classified as
“continuous” because it is in constant operation [DESI98]. Normally there will be some
timeliness requirement determined for the end-to-end latency of processing one set of
sensor input.

The next path begins once the threat assessment path determines that there 1s a
potential threat and an action against that threat is necessary. This type of path is called
“transient” because it is invoked in response to sensor input. [DESI98] Time is also a
critical factor in this path. The path latency objective is key in these types of systems
since they may involve mission-critical or safety-critical operations. Desiderata refers to
this as the engagement path,

The final path is the missile guidance path, which is “activated by an action
initiation event and deactivated upon completion of the action. [DESI98]” Since this path
behaves like a continuous path once it becomes active, it is called “quasi-continuous”.
Once the system fires a missile (activated), it will continually give guidance commands to
that missile until it explodes (deactivated). The characteristics (speed, distance, altitude)

of the threat cause the iteration time of a cycle to be dynamically configured.

12

3. System Architecture

Actions in the dynamic paths (real-time paths) send time-stamped messages to the
QoS metrics component. This component then calculates whether the path-level QoS
metrics are being met and sends this information to the QoS diagnosis component when a
violation is detected. The diagnosing component advises the action selection component
of the cause of the poor QoS and recommends actions such as moving to a different host
or program replication to improve QoS. The action selection component determines the
best of the recommended actions to execute. The allocation analysis component
determines a suitable way to allocate resources for these actions by consulting the
resource discovery for local area network (LAN) hardware metrics. This component
then requests the allocation enactment component to execute these actions. At heart of
this architecture are the spec files which contain path latency requirements, startup LAN

and Host resource specifications (e.g. SPARC, Windows® NT, 200Mhz), resource

locations, and real-time path designations. See Figure 4.

13

distributed

Figure 4. Logical architecture management software [DESI98]

Desiderata’s system architecture is displayed as follows in Figure 5:

14

[86ISA] yuswaSeurw SO0) PUR IIINOSII I0J JIBMIJOS BJRIIPISI(] 'S N1]

e ISoH

SI0MUOIA
ommpieH

sdwe)sowy,

SI0) IO
rMpIiRH

SIONUON
aemprH

uonewioyu] ISOH

»Ieurp SOO

12%04¢] dmeApIeH

S3IOUSILY ‘SUOTIL|OTA

Aed ‘UOHEULIOJUPRLO T Yivg

UONBULIOHU] Yitg

uonedyIoju]

SA11d O4dS

23dg S0 soD

1o%01g WSS

10z£jeuy orMpReH 1Feueiy 02Inosay

(puoj 1o ‘9,
uoneuuojuf 1504

JOAIDS SWEN

UONEUIO, oyl Y
uoty wesdoid ‘ojul aduryoxa
‘uonRI0fjY walks ayj ui

wieidoig-1soHq sweadord |y

15

The Resource Manager is activated when the dynamic paths are not meeting time
constraints and when applications terminate abnormally. Resources are reallocated based
upon these events to improve the QoS metrics of timeliness and fault tolerance. The
Program Control component requests daemons on particular hosts to start and stop
applications based upon mandates of the Resource Manager. Another function of the
Program Control is to receive abnormal program termination informaﬁon relayed to it by
startup daemons and forward this information to the Resource Manager. The Startup
Daemons reside only on one host and control applications’ starts and stops. The
Hardware Monitor is a daemon that resides on each host and is responsible for gathering
load metrics for hosts and the LAN. It then passes this information to the Hardware
Broker. The Hardware Broker collects all the monitors’ metric information and develops
an aggregate load index for each host, which is sent to the Hardware Analyzer - a
component responsible for providing a sorted list of host load indexes. The QoS
Manager(s) “detects if a real-time application path becomes unhealthy (misses its.
deadline), diagnoses the cause of the poor heath, and suggests corrective action (such as
moving or replicating an application program) to the resource manager [DESI98].” The
System Broker provides clients with information from the system specification and the
Name Server maintains information on middleware application configuration. The final
component of this system is the QoS Management Human Control Interface (HCI) that
provides information to the user regarding configuration of the system, status and QoS of

applications, and resources’ reallocation operations. [DESI98]

16

C. QUALITY OF SERVICE REQUIREMENTS
1. Overview

To best maximize the use of existing resources, QoS metrics and monitoring are
essential to resource management. An RMS must know the system’s current status and
the level of service it is responsible for delivering to the client. In a dynamic, combat
environment, computing technology must be as adaptive as the soldier, and maintain
situational awareness to execute mission-critical tasks. Though QoS specifications can be
divided into policies and metrics, the performance metrics of timeliness, accuracy, and
precision are best suited for the mission-critical and safety-critical systems used in
military conflict [CHAT98].

2. Timeliness

Timeliness encompasses a class of metrics that measures time-related entities. It
can be defined as a “representation of the timing requirements for performing a given
piece of work [CHAT98].” Timeliness metrics are often quantified as latency, delay, or
time to complete. They may also represent the earlieét or latest start time for a task. For
time-critical systems, timeliness is used synonymously with the term deadline. Failing to
achieve a deadline in these types of applications may at a minimum, render collected data
useless. At a maximum, it could result in the loss of life. In air defense systems utilizing
the dynamic path paradigm, sensor data in the threat assessment path must be transferred
to the engagement path. Also sensor data are given to the missile guidance path. The
RMS must control the “timeliness” of these actions to ensure system synchronization, and

threat detection and destruction.

17

3. Accuracy

The measure of data correctness and errors introduced into data by work and
services performed define accuracy. [CHAT98] There must be a distinction made
between data content and representation as the data flows through an application.
Content refers to the accuracy of the data, whereas representation refers to the accuracy of
the data’s representation to the computer. If data generated at a certain level of accuracy
cannot be depicted within the computer with that same level of accuracy, then
applications lose the benefit of the data’s initial correctness. Accuracy is especially
important for an RMS in military applications because it is the responsibility of the RMS
to “sell” information to its clients — decision-makers and operators. [CLAR97] Ina
manual system, inaccurate data can cause these clients to make uninformed and
potentially disastrous decisions. In a system utilizing automated engagement, there is no
“human factor” to aid in decision making, so inaccurate data will possibly cause the
system to give an improper response.

4. Precision

Precision is also defined as it relates to content and representation. Precision of
representation refers to the amount of data or work (volume)[CHAT98]. This volume is
the physical amount of bits and bytes. The more bits used to represeht a number, the
greater number of decimal places are available for more precise calculations. To clarify

the difference between accuracy and precision refer to Figure 4.

18

The Target

Figure 6. Precision vs. Accuracy

Using the ISO/OSI model, the precision of content in one layer translates into a
precision of representation in the next lower layer. For example, a data packet in the
network layer is composed of the payload and the header (content); the content of this
data structure is understood by the network system. But the lower datalink layer
recognizes that data only as a collection of data bytes and represents that as a series of
bits. [CHAT98] The precision of representation affects how well the information can be
read in the network layer of the destination host.

Air defense monitoring systems refer to precision as Track Quality (TQ).
[CLAR97] TQ is calculated from sensor input and incorporated in the current track

record. The TQ is then updated based on these calculations until the TQ (or precision)

19

drops to unacceptable levels and then the track is dropped. This is an example of how a

RMS uses the precision metric in threat monitoring.

D. SUMMARY

Chapter I gave an overview of real-time, distributed applications and their QoS
requirements. Section A focused on the AEGIS system, its components and functions. It
analyzed the system’s progression and applicability to command and control situations.
Section B focused on the Desiderata project and how it applies to real-time distributed
systems. It discussed the use of dynamic paths for QoS assessment and resource
allocation, and how Desiderata could be used to further automate these actions. Section
C presented and analyzed the QoS requirements of real-time distributed applications and
how they can be measured. The QoS requirements were Timeliness, Accuracy, and
Precision. The next chapter will discuss current RMS projects with a focus on MSHN

and its relation to Desiderata.

20

III. RESOURCE MANAGEMENT TOOLS

Resource Management Systems (RMS) are commonly referred to as meta-
computing systems though they actually build on top of the metacomputing framework.
The RMS goal is to provide a prescribed quality of service (QoS) to processes and
applications that are competing for distributed, heterogeneous resources [HENS99]. A
RMS parallels the execution of a distributed operating system in that it views the group of
computers it manages as a virtual machine [VAN 85] and attempts to provide the user
with a “location-transparent” view of the resources. Through the use of a RMS, users
should gain a higher level of resource availability and fault tolerance than would be
possible on their local system alone [HENS99]. A RMS does not manage the resources
of each computer, which is why it differs from a distributed operating system. The RMS
is résponsible for monitoring application, resource and QoS status across the virtual
machine, and issuing commands to facilitate keeping those statuses at prescribed levels.

Chapter III discusses three on-going RMS research projects, their architectures
and areas of focus. Section A details the GLOBUS [CZAJ97] project and its attempt to
provide innovative resource management solutions. Section B provides an overview of
the ERDOS [CHAT98] project and its resource management approach. Finally, Section

C details the MSHN [HENS99] project as an adaptive QoS-driven RMS.

21

A. GLOBUS

Each attempt to implement resource management of geographically distributed

resources begins with an identification of the problems to be solved. The GLOBUS

project has identified five key elements of resource management that are addressed in its

architecture.

First, since resources are owned and operated by different organizations, in
different domains, it is unlikely that there will be commonality in policies
such as acceptable use, security, and scheduling. This is known as the site
autonomy problem. [CZAJ97]

Because each site is autonomous, it can be expected that each will use
different local RMS or if the same RMS is used, it will be in a different and
possibly incompatible configuration. This is called the heterogeneous
substrate problem.[CZAJ97]

The third problem is policy extensibility, which arises because heterogeneous
distributed computing applications come from a wide range of domains with
different resource requirements. Thus a RMS “must support the frequent
development of new domain-specific management structures, without
requiring changes to code installed at participating sites[CZAJ97].”

Because some applications have requirements that can only be met though the

use of several resources simultaneously, the fourth problem is co-allocation.

22

e The final problem of online control is very closely tied to QoS. In a RMS,
negotiation is necessary to ensure that applications can adapt to resource

availability, especially when requirements and resource status are dynamic.

GLOBUS’ architecture was designed to address the five problems mentioned
above. Entities known as resource managers confront the problems of heterogeneous
substrate and site autonomy. The managers provide a well-defined interface to different
local resource management tools, policies, and security implementations. The project has
a resource speciﬁcatiqn language (RSL) that, in conjunction with resource brokers, is
able to support negotiation between different components of a RMS, and handle
application requests. These components address the problems of online control and
policy extensibility. Resource co-allocators define various co-allocation strategies to
defeat the co-allocation problem. Figure 5 presents the GLOBUS architecture. In this
diagram, LSF, EASY-LL and NQE represent local resource schedulers and GRAM is the
local resource manager. Key to this architecture is the information service. It is
responsible for providing information about the current availability and service
capabilities of resources. This information is used to: locate resources, determine
resource properties, and process high-level resource specifications into specific manager
requests [CZJA97]. A testbed for this architecture was developed that is comprised of 15

sites, 330 computers and 3600 processors [CZJA97].

23

] RSL
Broi(er m specialization
RSL
- - Queries Infonnation
Application § T Service
Ground
RSL
Co-allocator
Simple ground RSL
) A
Local GRAM GRAM GRAM
resource
managers LSF EASY-LL NQE

Figure 7. The Globus resource management architecture,
showing how RSL specifications pass between application,
resource brokers, resource co-allocators, and local managers.
[CZJA97]

B. ERDOS

The End-to-End Resource Management of Distributed Systems (ERDOS) project
is an architecture developed to provide adaptive, end-to-end, and scalable distributed
resource management to applications [CHAT98]. This is a difficult goal to achieve
especially in a distributed environment where real-time resource requirements dictate
coordinated resource management. The problem is intensified by today’s heterogeneous

computing environment, high degree of resource sharing (GLOBUS’ co-allocation

24

problem [CZJA97]) with varying QoS requirements, and a computing domain where
resource availability and requirements are dynamically changing. [CHAT98]

The goal of ERDOS is to “identify the functions that must be preformed by each
of the system layers in order to achieve end-to-end application-level QoS guarantees by
performing QoS-driven resource management [CHAT98].” The following models capture
information from the three perspectives (application, resource, and system) of resource
management and enable the middleware to react to heterogeneous applications and
resources:[CHAT98]

e Logical Application Stream Model (LASM): Application perspective —
determines applications’ structure in a system-independent manner.

e Benefit Function (BF): - An abstraction that models an application’s QoS
stipulations and preferences.

e Resource Model: Resource perspective — captures the resource information
necessary for resource management algorithms.

e System Model (SM): System perspective — describes the layout and
management structure of system resources.

ERDOS identifies the system layers as application, middleware, and resource. The
architecture is not limited to proprietary applications or specific algorithmic policies. To
facilitate communication between these layers, application programmer interfaces (APIs)

are used. See Figure 8.

25

- - | . t.
LASM, . eonbication e e

BF API
Middlew: are-lev el Resource I\i[andgement
(svstem manager)
Resource -,; """ 3 '; ------ 3 i dncc o
Madel API - ey P

network

4@4

Figure 8. ERDOS System Architecture [CHAT98]

There are two primary API’s in this architecture. The first API, the LASM-BF
API, is between the middleware and the applications. The API facilitates the resource
manager controlling the components of applications by determining on which resources
the applications should run and at what level of QoS. This interface allows applications
to run on different QoS-driven systems, independent of the RMS middleware
implementations.[CHAT98]

The second API, the Resource Model API between the middleware and the
resources, divides the middleware into generic and resource-specific parts. This division
allows for masking of implementation details of resources from the middleware, and
dealing with all resources in a uniform manner. The second point is especially important
because it simplifies integration of new resource types.[CHAT98]

e The ERDOS middleware QoS architecture is shown in Figure 9 [CHAT98].

26

Logical Application

benefit ﬁmcuon S
Stream Model r L
Invocation Model l

QoS integ. allocation
routing, structuring,

QoS 1d'1pt ation

adaptive
2. Tesource
Composition — R

QoS analysis/ .
oS andy scheduling

system-specific
application stream model

Figure 9. ERDOS Middleware QoS Architecture [CHAT98]

The middleware of this system encapsulates the crucial adaptive RMS algorithms
that assign resources to applications, schedule applications on the shared resources, and
adapt an application’s QoS when system requirements exceed resources. The use of APIs
provides portability to the system, which allows for the use of COTS software at the
application, and resource layers. The adaptive nature of the RMS makes this system
useful in a mission-critical or time-critical computing environment when QoS

requirements are in conflict with system resources available.

C. MSHN

Another RMS envisioned for a heterogeneous computing environment is the
Management System for Heterogeneous Networks (MSHN). The goal of MSHN, as with.
any real-time RMS, is to identify current resources available in a computing domain and

allocate those resources to applications. Resource allocation mechanisms attempt to

27

provide a predetermined QoS to these applications based upon factors such as security,
user preferences, and timeliness requirements. [HENS99]

MSHN is intended to be a research system to develop adaptive scheduling of
process execution and provide support for adaptive-aware applications [HENS99].
Adaptive—aware refers to the ability of an application to input, process or output data in
different versions based upon QoS metrics such as precision, accuracy and timeliness. In
addition to resource allocation, MSHN’s model describes adaptive mechanisms to allow
for application migration from one system to another, if QoS violations are above an
acceptable threshold.

“MSHN seeks to determine how to meet multiple different QoS requirements to
multiple different applications simultaneously [HENS99].” There are two key issues that
must be addressed in order to achieve this objective. First, a method must be developed
to dynamically determine a value for a combination of QoS requirements. Second,
resource allocation algorithms must match applications to resources that best achieve this
value.

When a user requests service, a RMS should transparently locate resources in its
computing domain to provide the service. The user should no be required to explicitly
request the RMS to perform its task. MSHN’s architecture (see Figure 10) provides for

both while also addressing its objective’s key issues.

28

start

daemon
Application
request {or emutator)
2 Updata {
Client Library Resogrce Status
erver
Call
Back L}
Query C;i: K Query/
Update Responsa ¢ Response
. \ cuer
Resource {UETY: _
. L Response :
Requirements < £ si‘:‘g‘;g:‘g
Database Cal
~ Back

Figure 10. MSHN Conceptual Architecture [HENS99]

Central to MSHN’s execution is the Client Library. The Client Library provides a
mechanism for executing remote processes and for transparently determining the
computing domain’s resource status. The Client Library is “wrapped” around an
application and intercepts that application’s system calls [SCHN98]. Researchers at the
University of Wisconsin refer to this action as Process Hijacking [ZAND97]. This
technique is used for the RMS to gather application/process information on COTS
software not designed to report to that RMS. A MSHN Daemon runs on each system to
start processes on behalf of the Client Library.

The Scheduling Advisor’s (SA) task is to make a best effort allocation of
resources to applications. To achieve this, it receives information from the Resource
Status Server (RRS) and the Resource Requirements Database (RRD). The RSS
maintains a database of static, moderately dynamic, and highly dynamic resources. The

RRD is a database that provides to MSHN a list of the resources necessary to execute

29

applications at their desired QoS. These components communicate with each other and
are updated constantly to ensure proper operation of this RMS. Specifics of component

execution and communication will be discussed in the following chapter.

D. SUMMARY

Chapter I provided an overview of three on-going RMS research projects, their
architecture and areas of focus. Section A provided information on the GLOBUS project
and its attempt provide innovative resource management solutions. Section B gave an
overview of the ERDOS project and its current application towards resource
management. Finally, Section C reviewed the MSHN project as an adaptive QoS-driven
RMS. Chapter IV will analyze QoS status monitoring and QoS violation detection. The

Desiderata and MSHN RMS projects will be used as case studies for this analysis.

30

IV. QOS VIOLATION MONITORING

Desiderata and MSHN are both QoS-driven RMSs that require QoS monitoring to
effectively allocate resources. “Effectively”, in this case, means best effort execution of
an application to a user’s requested and required QoS. Best effort execution gives the
same priority to all applications, therefore, when the load is low, the RMS can deliver
high-quality service easily. With an increased workload comes a uniform decrease in the
service-quality levels the RMS is able to provide [HUSTOO]. For example, a user may
indicate preferences for particular formats for output. A requested level of QoS may be
streaming video, but if the resources required for video display are not available, then a
text based representation may meet the QoS requirement. Although the user might not
receive the most preferred format, the RMS working with the adaptable application is
able to adjust and provide some level of service as opposed to none. In contrast, if the
RMS is working with an application that is not afiaptable, then QoS depends upon
successful completion of the application. In a mission-critical system, where the key QoS
metric is timeliness, the requested and required levels of QoS are synonymous. It is
imperative that the RMS identify QoS violations, and react appropriately — for example,
by migrating or by distributing processes to other hosts, or decreasing precision — so that
requested and required levels can be met.

In this chapter, QoS violation monitoring techniques of RMSs will be reviewed.
Section A presents the Desiderata process for monitoring QoS and detecting QoS

violations. Section B presents our proposed MSHN QoS violation detection method.

31

A. DESIDERATA

QoS measurement has a major effect on Desiderata’s operation. At the center of
this measurement is the timestamp. The SendTimeStamp function’s structure is as

follows:

int SendTimeStamp(int pathserv_sd, //path manager’s comm. socket

char Event[1], /levent parameter

int Sequence, //current sequence number

int Tacticalload, //number of tracks-datastream
char Host[32], //mame of host of application
char ID[8], /lprocess identification

int buffsize) //size of buffer or message size

This function is used to send a message to the Path Manager that conveys the current
mode of an application. Pathserv_sd identifies the socket that applications should use to
communicate with the Path Manager. The Event parameter takes the values of “R”, “S”,
and “D”, which signal to the Path Manger that an application is registering, starting or
done respectively. Other parameters in the structure are the cycle count, host and process
identification number of the sending program, and the buffer or message size. This
function’s return value indicates to the calling path application whether the Path Manager
is Dead or Alive. The R, S, and D timestamp data are used by the QoS Manager in
conjunction with the QoS specifications to determine whether a path is meeting its
defined level of QoS. [SONAOO] Load and violation information is then passed to the
Resource Manager, which is responsible for program allocations and actions. These

actions include spawning multiple versions of the same program or migrating a program

32

to a host with more resources available. Figure 11 displays the information and control

flow of the Desiderata system. Note the timestamp information flow from applications to

the QoS Manager.
Resource Manager
QoS Spec
QoS QoS Spec
SPEC FILES
nformation,
Violati .
QoS Spec iolations,

Program Control . QOS Manager

Program Commands

Startup Daemon) up Daemon Jup Daemon

Timestamps

Shell Commands

DynBench
Benchmark

Figure 11. Timestamp Sequencing [DESI98]

Not pictured are the hosts where these programs are executed. To see how they are
integrated review Figure 5. Application timeliness information is developed dynamically
to assist in violation detection. It is compared to static specifications with the following

Specfile syntax:

33

PATH Guidance{
Connectivity{
(D:B:MGM, D:B:MG); //This defines the path’s flow — Missile Guidance
Manager to Missile Guidance System

Type Continuous; /[This path is always executing.
RealTimeQos{
SimpleDeadline 1.0; // Deadline for path execution
BatchLatency 5.0;
BatchInterArrival 5.0;
Maxslack 80; //Max deviation from deadline
MinSlack 20; //Min deviation from deadline
SlidingWindowSize 20;
Violations 15; //Number of violations before flag is raised
etc

Though this is only a portion of one dynamic path specification in Desiderata, the
other paths are very similar; the majority of a path’s specification is devoted to stipulating
time parameters such as the deadline and the minimum and maximum slack (deviation
from the deadline) allowed during a path’s execution. Though timeliness is addressed
extensively, currently there are no aspects of this system that address areas of precision or

accuracy.[SONAQOO]

B. MSHN

The vision of the MSHN project is to develop a system that can monitor QoS and
dynamically manipulate processes and resources within its scope to provide the user with

a requested level of QoS or an acceptable substitute. MSHN’s Client Library (CL)

34

monitors application completion times by trapping the exit system call. The current
implementation of the MSHN project comprehensively gathers data on an application’s
resoﬁrce usage by “wrapping” that application, intercepting its system calls, and storing
that data. With the monitoring data from these discrete applications, scheduling
decisions can be made regarding the application termination actions necessary to achieve
the requested QoS. The intent of this research is to adapt the CL to be able to monitor
progress of continuous applications (those that do not include the exit system call), while
maintaining the ability to evaluate those that are discrete. By adding a component to the
MSHN system that is able to transparently detect continuous application QoS timeliness
violations, MSHN will be able to perform its duties as a RMS with a wider range of
legacy and COTS software. This is in ‘contrast to Desiderata, which uses the
SendTimeStamp, invoked via explicit function calls within the source code of the test
applicétions (i.e., not transparent monitoring) to provide input to the QoS manager. The

proposed MSHN component is the Transparent Path Monitoring System (TPMS).

1. Transparent Path Monitoring System(TPMS)

The TPMS is comprised of the following five modules:
e SpecDB Module -Specification Database
e PathDB Module -Path Database

o Path Timer Module

35

¢ Evaluate and Alert Module
¢ Control Module

The relationship of TPMS modules to MSHN modules is shown in Figure 12.

TPT Evaluate Deadline S
1 ec DB
Path Timer & Alert p
‘—’ Generic ERRD/RSS :‘“— §"“];;I‘)’ ,-—-——
» Deadline | -------eeeeeet N, tteteoee- .
i Timer 7 L.!
- PathID

Current Instance

~ - ~. -~
———— S S————— S

]
!) ¢ Represents a MSHN Component

Figure 12: TPMS Representation in Regards to MSHN

The SpecDB Module is responsible for establishing in memory a database that contains
path timeliness QoS specifications, which are similar to those used in Desiderata. This
module parses a user-defined data file, and uses it to populate the database in memory; as

a memory-resident database, there is fast access to data by the system. The specifications

36

detailed here include path identification number, length and deadline; the application
identification numbers; and the order in which the application executes within a path.
Once this module is initialized and populated, the TPMS initiates the PathDB module.
The PathDB module creates a PathDB database that contains the path
identification number and path length for each path. It also contains pointers to the
multiple instances of path status data that a single path may create. There will be a
separate instance for each datastream. Each instance of that path contains an instance
identification number, a counter to determine how many applications have reported, and
an array that holds application initiation and completion times. These times are used to
calculate path latency. The following depicts the results of PathDB module’s

initialization phase with one path, one instance and one application report time.

App

pathinstancePtr instID [appCounter Next IR Time

Multiple
1
PathID L::;h Next ‘W application times

Figure 13: PathDB Module Initialization

In this case, pathLength and appCounter all have the value of “1”. Instances of a path are
created as necessary to accommodate application time data as they arrive. These times
are placed in a dynamic array built at runtime. Its size is based upon the number of
applications in a particular path. Because the applications used in this research are queue-

based there is a possibility that a new timestamp for a single application may arrive at the

37

Control Module even though the prior path has not yet completed; therefore, multiple

instances of the same path are supported. For example:

Sequence of Action Result
Events (Path A=Apps 1, 2, 3)
1 Application 1 delivers timestamp Stored in 1 instance of Path A
2 Application 1 delivers timestamp Stored in 2" instance of Path A
3 Application 2 delivers timestamp Stored in 1% instance of Path A*

Table 1: Timestamp Sequencing

The assumption made in sequencing is that there is no possibility that a datastream passed
to application 2 by the 1* instance of application 1 could be superseded by the datastream
from the 2™ instance of application 1. Note that if you could show where the queue
bottlenecks, then that particular element of the path would be a candidate for
parallelization.

In the Evaluate and Alert Module, the Total Path Time (TPT) is compared to the
deadline information stored in the Specification Database. If the TPT exceeds the
specified deadline, then a flag is raised. It is then the responsibility of the MSHN’s
Scheduling Advisor to determine the best action to restore the system to the required level
of QoS.

The Control Module is responsible for accepting applications’ start and
completion information from the CL. As an application executes, the CL sends the
applications name and an event character- “S”, starting and “D”, done, periodically to the

Control Module. With this information and a timestamp from the Control Module’s host,

38

it populates the PathDB. Once all time positions are filled in a particular path instance,
the TPMS conducts timeliness calculations and the system determines if a QoS violation
has occurred. The specification for each module is provided in Appendix B.

2. MSHN Integration

For the TPMS to work during execution of path-based applications, it must
receive an application ID and an event character indicating that an instance of a
datastream has arrived at an application or that it has been passed to the next application.
For this research, it was necessary to identify how communications are facilitated among
the applications within the path. The testbed DynBench applications, which emulate an
air defense system, establish sockets and send datastreams and messages using the
read() and write () “C” programming functions. This is true whether applications are
executed on a local or remote host. The read() and write() call interception of
MSHN [SCHNO98] were modified to send an event character and an applicationlD to the
TPMS Control Module. When an application receives a datastream though the read ()
function, the CL forwards to the TPMS the applicationID and the event character of “S”,
which indicates the application is starting to process data. The TPMS then logs the time
it received the message. When calculations are complete on each distinct datastream, the
application forwards the datastream to the next application in the path using the write()
function. At this point the CL again sends the applicationID to the TPMS, this time with
an event character of “D” to represent the completion of data processing. This
completion time is now logged by the TPMS. Application latency is determined by

calculating the difference between start and completion times of an application.

39

Similarly, calculating the difference between the start time of the first application and the
completion time of the last application in a path provides the path latency or TPT.

The read () andwrite () functions are commonly used system calls; therefore,
datastream receipt and forwarding must be distinguished from application-related usage.
Applications that use end-to-end communication do so by establishing sockets and using
the read() and write() functions. The client library has the ability to intercept
| system calls designed to create sockets and return their descriptors. The MSHN_sd_Class
was developed to store and access these sockets’ descriptors in a database. When a
socket is created, its descriptor is inserted in the database. If a read () orwrite () call
is intercepted, the file descriptor (fd) in the function call is compared against the
MSHN_sd_Class database. If a match is found, the system call is executing a datastream
receipt or forwarding event and the CL will send notification to the TPMS Control
Module. Use of other file descriptors is ignored.

Since this implementation of the transparent QoS monitoring requires
communications across multiple hosts, there must be some technique to access a common
time reference. We have assumed that hosts within MSHN will not have perfectly
synchronized clocks, so an implementation of the Network Time Protocol (NTP) was
considered in past MSHN work. A remote process would query a timeserver and then
use a formula to estimate clock offset and error [SCHN98]. In the current
implementation, a User Datagram Protocol (UDP) server contained in the TPMS Control
Module, accepts initiation and completion messages from the CL-wrapped applications

communicating with UDP messages over the Internet Protocol(IP), and generates a

40

timestamp using the local clock time of the host. These messages along with the
timestamps are recorded in the PathDB Module.

This method of determining application start and stop time of a unique datastream
remedies the errors generated by host clocks that are not synchronized. We have assumed
that path-based applications initiate and complete in the correct order, but because we
have network communications, reporting of those actions may arrive in an incorrect
order. Ongoing work may include CL-to-CL communications implemented to assign
path-instance identifiers to the datastreams as they pass from application to application.

In future MSHN research, it is expected that the SpecDB Module will be
incorporated into the RRD. Also the Evaluate and Alert Module’s functionality will be
incorporated into the RSS and RRD, with both updating the SA. Since a discrete
application can be represented as a path of one, continuous as well as discrete

applications will be supported by the enhanced MSHN system.

C. SUMMARY

Desiderata and MSHN are both QoS-driven RMSs that require QoS monitoring to
allocate resources in a best effort execution of an application. In a mission-critical
system, the requested and required levels of QoS are synonymous. It is imperative that the
RMS identify QoS violations, and react appropriately — for example, by rrﬁgrating or
distributing proéesses to other hosts, or by decreasing precision. Section A presented the
Desiderata process for monitoring QoS and detecfing QoS violations. Section B

presented a proposed MSHN QoS violation detection method described as the

41

Transparent Path Monitoring System (TPMS). Chapter V will detail experiments
conducted and results obtained using MSHN’s application wrapping technique with

TPMS on Desiderata’s DynBench air defense applications.

42

V. EXPERIMENTS AND RESULTS

A good monitoring tool’s resource usage does not hamper the execution of the
application or the system that it is monitoring. This chapter investigates the overheafi of
the TPMS implementation. TPMS receives information from path-based applications
wrapped with the MSHN CL. In past MSHN work, it was determined that the CL adds
an average of 3% overhead to each system call [SCHN98]. Since timeliness is the key
QoS metric in mission-critical systems, path latency will be the focus of this
investigation. This experiment will use the DynBench applications that emulate an air
defense system with path-based programs. Section A details the experimental design
necessary to capture overhead data. Section B gives the results of the experiments

conducted.

A. EXPERIMENTAL DESIGN

Our experiments focused on path latency measurements of DynBench applications
when run (1) unmonitored and unwrapped, (2) monitored by Desiderata RMS and (3)
wrapped and integrated with TPMS. The hypothesis is that TPMS will increase a path’s
completion time, but the increase will be at an acceptable level and will not hamper
DynBench’s execution.

To better understand how DynBench applications work together see Figure 14.

43

Scenario
File

| Path 1

Evaluate
& Decide

/i o =
Console x\Manager
{ display) ’

Action
Manager

s
\,
"

~a .

(itor &
Guide
Path 3

... Ki)

Figure 14. DynBench Application Communications [DESI98]

The scenario file gives initial input to the sensor simulating initial contact with aircraft
and/or projectiles. The solid lines indicate transfer of a datastream or “track data”
between applications. Applications shown as tiled in Figure 14 may be run as multiple
instances to provide load sharing. Dashed lines indicate message traffic or a
communication channel for simulated input. For example, the actuator program must
send the positions of the missiles it has “fired” in response to threats to the sensor
program. This updated track data is then passed throughout the system.

The hardware used in this experiment was an ULTRA 10 Unix workstation with

128MB RAM, and 300 MHz processor. The operating system is SUN® Solaris 5.5. Key

to the path’s completion time is the size of the data set used as input into the path. This is

significant because the presence of threat aircraft results in missiles being fired and a two-
fold increase in the input data to the sensor progfam. To maintain a baseline, the same
scenario file will be used for each run. This file contains the start position and movement
vectors for each aircraft.
R Violation Detection

The first experiment involves determining if the TPMS system can detect a QoS
violation. Remembering that a QoS violation occurs when path latency exceeds the user
defined deadline, it is necessary to determine what that deadline should be. The deadline
for this experiment was determined statistically by calculating the standard deviation of a
sample of Total Path Times (TPT) created with the TPMS. This resulted in the

following data: (See Table 2.)

. AVG(MEAN) |- STDDEV
L (sees) ol (secs)
TPT 0.121098 0.021053
Deadline
0.152678

Table 2. Deadline Derivation

To calculate the deadline value, the standard deviation was multiplied by 1.5 and added to
the arithmetic average (mean). With this calculation technique, the deadline provided

enough violations to demonstrate the effectiveness of the system.

2. RMS Execution

The second experiment entails comparing path latency through the DynBench

applications in an unmonitored mode, with Desiderata QoS management, and wrapped

45

and reporting to the TPMS. The unmonitored DynBench will be used as a baseline for
comparison of the other RMS’ implementations. To maintain consistency, all parameters
such as track data, hardware, and OS will remain the same. This is an important test
because it should demonstrate if there is a significant overhead increase between an RMS
using transparent QoS detection (MSHN-TPMS) and an RMS detecting QoS using
function calls embedded within monitored applications (Desiderata). Additionally, it
will be important to note how much overhead TMPS adds to the basic application suite.

Prior to testing, modifications to the DynBench applications were necessary to effect
timeliness monitoring. A sample experiment was conducted to confirm that cycle time
padding delays were restricted to the sensor application (first application in the path).
The next phase was to determine the best place to insert probes to measure time and
negate the effect of padding. These modifications had no effect on how the system ran,

and did not skew latency data.

B. RESULTS OF EXPERIMENTS
1. Violation Detection

Execution of the first experiment was straightforward. The applications within
the first DynBench path were wrapped and the path was given a deadline of 0.152678
seconds to complete. A few points must be noted. Track data are initialized in the
sensor process using a data file called the scenario file. From there track data are
generated by the sensor process; therefore, there is no direct input to the sensor program

that could be caught, in a read () call, which would be used to alert the TPMS. Because

46

of this, the TPMS registers the start of the filter manager application (FM) as the start of
the path.

By running 500 cycles of the path, it was found that 99.4% of the path completion
times met this arbitrary deadline. This demonstrates that the TPMS supplemented with
the CL can transparently detect QoS latency violations. But at what price do we achieve
success? This forms the basis for the second experiment.

2. Effect of Monitoring on Path Latency

DynBench’s unmonitored run (no Desiderata or MSHN management) at 1000,
2000 and 5000 cycles had total execution times of 20.426, 40.912 and 102.674 seconds.
These times represented non-padded results and formed the baseline to which Desiderata
and TPMS are compared.

The initial hypothesis was that TPMS monitoring would increase the execution
time of the system due to its use of sockets to communicate to the CLs. This proved to be
true. TPMS increased execution time in the 1000 and 2000 cycle runs by a factor of
0.007 seconds per cycle in comparison to the unmonitored DynBench run. It was 0.008
when the cycle total was 5000. Desiderata increased execution time by 0.002 seconds per

cycle for each of the three cycle periods. See Table 3.

47

DynBench Unmonitored | w/Desiderata Increase w/TPMS Increase
Variations (secs/cycle) and CL (secs/cycle)

1000 CYFIGS) 20.426 22.498 0.002 27432 0.0070
Completion Time

(secs)

2000 Cycles 40.912 44.810 0.002 55.347 0.0072
Completion Time

5000 Cycles
Completion Time
(secs)

102.674 113.160 0.002 141.902 0.0078

Table 3. DynBench Execution Data

Table 3 demonstrates a uniform increase in execution time relative to cycle increase for
all three versions of DynBench. Also, the execution time overages remained relatively
consistent for each data set.

It is clear that Desiderata has less of an effect on path completion time than does
TPMS. For TPMS, the CL interception of system calls and passing initiation and
completion messages to the TPMS Control Module effects completion time of the
applications within the path. The slight increase in seconds per cycle between
unmonitored DynBench apd TPMS upon cycle increase, indicates that there is some very
small but cumulative delay introduced by TPMS as the test cycles increase. To further
study this delay, we collected data on larger cycle runs of 10,000 for unmonitored
DynBench and TPMS. Once again we had a slight increase in the seconds per cycle ratio.
The most plausible reason for the increase is the multiple dynamic allocations and
deallocations of memory for storing temporary data in the TPMS system. See chart in

Figure 15 for comparison of overhead increases of Desiderata and TPMS.

48

Spuoosesg

2000 5000 10000

ODesiderata Number of Cycles
OTPMS-CL

Unmonitored 1000

Figure 15. DynBench Overhead in Desiderata and TPMS

As TPMS is further integrated into the MSHN architecture, further study will be

required to determine if the increased overhead is an acceptable tradeoff for using COTS

applications and transparent QoS monitoring.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

VI. CONCLUSIONS AND FUTURE WORK

This thesis accomplished the two primary objectives as outlined in Chapter L
First it describes, in detail, the QoS requirements for real-time, distributed applications
based upon user criteria. Second, a technique was developed to transparently detect the
QoS metric of timeliness within a path-based set of applications. This chapter discusses

the contribution of this thesis and proposed follow-on work.

A. CONCLUSION

The Management System for Heterogeneous Networks (MSHN) requires usage
information associated with applications that run within the MSHN system and status
information for the resources within the MSHN scheduler’s scope [SCHN98]. The
scheduler makes decisions based upon this information. MSHN’s Client Library (CL) is
Wrapped around an application and transparently gathers resource usage and application
data. This thesis presented a technique to identify ongoing timeliness QoS violations
through extensions to the CL. |

The CL’s task is to intercept system calls and send information to the MSHN
system. Chapter IV presented a method, utilizing this interception capability, to monitor
the timeliness QoS metric of path-based (i.e. continuous) applications. This method was
the Transparent Path Monitoring System (TPMS). TPMS calculated the end-to-end path

latency and compared it against a predetermined deadline provided by the end-user. If a

51

QoS violation occurred, a flag was raised within the system. Within the context of a
complete RMS, a responsive action to a QoS violation could be initiated.

Though the TPMS could be added as an additional component to MSHN, it would
be more appropriate to implement its functionality in MSHN’s Scheduler, Resource
Requirements Database (RRD) and Resource Status Server. Key to TPMS is its ability to
monitor QoS without access to application source code. This lends itself to COTS or
legacy software.

Testing of TPMS with the DynBench air defense simulation applications, proved
the hypothesis that TPMS would increase path completion times of the Dynbench system.
The CL’s system call interception and reporting to the TPMS Control Module, increased
the Total Path Time by an average of 0.007 seconds per path cycle. TPMS’ integration
into the MSHN architecture will require further study to determine if the increased
overhead is an acceptable tradeoff for using COTS or legacy software whose QoS is

transparently monitored.

B. FUTURE WORK
1. Expansion of Existing MSHN Wrapper Functionality

The development of the MSHN wrapper should proceed in two areas. In the
current implementation, the MSHN CL is linked with the object code of the target
application. The first area of research should be in development of a wrapping technique
for executable code. The Executable Editing Library was developed at the University

Wisconsin-Madison to accomplish similar goals [PORT99]. Also this topic is addressed

52

by Tim Fraser et. al. [FRAS99] in “Hardening COTS Software with Generic Software
Wrappers.” The second area of research should be focused on inter-wrapper
communication. Currently each wrapped application communicates with the MSHN
hierarchy but there may be some cases where applications need to “talk” to each other.
Inter-CL communications provide the ability to tag data and trace its movement through
MSHN’s architecture.

2. Integration of Windows Application Monitoring

The DoD is migrating to a Windows based environment in most situations. In
fact the Department of the Navy has decided that all future automation purchases will be
based on the Windows NT operating system [CINC97]. Because of this, techniques for

monitoring resources on Win32/x86 machines will need to be developed. Microsoft® is

working on a research project called Detours which is a library for instrumenting
arbitrary Win32 functions on x86 machines. This system intercepts Win32 functions by
re-writing target function images [HUNT99]. This work closely corresponds to the work
MSHN accomplishes in 2 UNIX environment. Additional thought should be applied to
methods of applying MSHN to this alternate platform while continuing to adapt it to
updated versions of the UNIX and LINUX operating systems.

3. Intergration of TPMS into MSHN

In future MSHN research, it is expected that the SpecDB Module will be
incorporated into the Resource Requirements Database (RRD). Also the Evaluate and
Alert Module’s functionality will be incorporated into the Resource Status Server and

RRD, with both updating and alerting the Scheduling Advisor. Since a discrete

53

application can be represented as a path of one, continuous as well as discrete

applications will be supported by the enhanced MSHN system.

54

APPENDIX A. DATABASE DESIGN

This appendix provides a detailed description of the databases created in the
Transparent Path Monitoring System’s modules. The initialization data file exists in text
format and can be modified with any text editor. The remaining databases are created

dynamically at runtime and are stored in memory to facilitate fast access.

A. SPECIFICATION DATABASE
To initialize the system, the user must create a data file that contains application
names and, path Ids, lengths, and deadlines. When the initialization function in the

SpecDB module parses the user created data file, it then creates and populates the

specification database dynamically. The fields are given in Table 4.

Description
pathID Uniquely 1dent1ﬁes a path.
pathLength Defines the number of applications in a path.
deadline The time in which the path must complete.
next A pointer that points to the next specification
node.
appList A linked list that contains the Application
Identification in the order that they occur in
the path.

Table 4. Specification Database

55

Figure 16 shows how the specification database logically exists in memory.

PathID Path App
2 Deadli N
Length ne ext .. ID
‘S/ u Mutltiple
application IDs
PathID Pa N PP
a i A
Lengtt Deadline ext . e . I

T
Figure 16. Specification Database in Memory

B. PATH DATABASE

Once populated, the specification database is static. In contrast the path database
is constantly being updated with application timestamps, and the creation and deletion of
path-instances. Table 5 presents the fields of this database, and Table 6 details the fields
of an instance node. An instance node maintains the application time information for a
particular instance of a path. These instances are connected by means of a linked list and
exist in memory only. The database is not stored between invocations of the TPMS. For

graphical clarification, see Figure 13.

56

HU‘n‘iqlvlely 1dent1ﬁes a path |

pathLength Defines the number of applications in a path.
next A pointer that points to the next path node.
instanceList A linked list that contains multiple instances

of the specified path.

Table 5. Path Database

instancelD Uniquely identifies a path instance.

appCounter Defines the number of applications that have
reported to this instance of the path

next A pointer that points to the next path
instance. A

timeArray An array of length pathLength that is built

dynamically and holds application timestamp
information.

Table 6. Path Database Instance Definition

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX B. TMPS MODULE SPECIFICATION
This appendix details the specifications of each of the TPMS modules. This
specification includes information on included libraries, and structure definitions. Also

public and private class functions are defined.
A. SPECDB MODULE

<assert.h> - for the assert function
<iostream.h> - for file input

<stddef.h> - for NULL
<time.h> - for time operations

e TYPES DEFINED
struct specDBrec - A cell/node in the list

o DATA MEMBERS

int pathID - path identification number

int pathLength- the number of apps in the path

float deadline - maximum path latency _

application]D* applicationIDArray - An array that holds application
names based on pathLength

e PRIVATE METHODS DEFINED
PtrTo - Returns a pointer to the element in current position

e LIBRARIES INCLUDED
e PUBLIC METHODS DEFINED

specDBClass - Default constructor
specDBClass - Copy constructor
~specDBClass - Destructor
| ListIsEmpty - Test to see if no elements exist in list
| ListLength - Number of items in list
ListInsert - Put an item into the list at position
ListDelete - Remove an item at position from list
ListRetrieve - Get an item at a specific position

= - Assignment one class object to another

59

DisplayList - Displays the list created

createSpecDB - Creates the specification database from an input file
appPositionInPath-Returns input application’s position in its path
getDeadline -Gets deadline value for input path

B. PATHDB MODULE

1.

pathDB.h
LIBRARIES INCLUDED
<iostream.h> - for /O
<assert.h> - for use with pointers
"specDB.h" - to use specDBClass specDBrec
"pathDBInstance.h" - to insert application times into path
“evalalert” - to access goodInstance
TYPES DEFINED
struct pathDBrec - A cell/node in the list

o DATA MEMBERS

int pathID - path identification number
int pathLength - the number of apps in the path
instanceClass instanceList - list of instances of path
PRIVATE METHODS DEFINED
PtrTo - Returns a pointer to the element in the current position
PUBLIC METHODS DEFINED
pathDBClass - Default constructor
pathDBClass - Copy constructor
~pathDBClass - Destructor
ListIsEmpty - Test to see if no elements exist in list
ListLength - Number of items in list
ListInsert - Put an item into the list at position
ListDelete - Remove an item at position from list
ListRetrieve - Get an item at a specific position
ListUpdate - Updates item at a specific position
= - Assignment of one class object to another
displayList - Displays the list created
createPathDB - Creates the path database from SpecDB
addAppTime - adds application time to path instance

60

pathDBInstance.h

LIBRARIES INCLUDED

<iostream.h> - for /O

<assert.h> - for use with pointers
<time.h> - for time operations
“specDB.h” - for access to specDBClass
TYPES DEFINED

struct instance - A cell/node in the list

o DATA MEMBERS

int instID - The identifier for instance
int appCounter - Counts the number of reporting
' applications

timeType timeArray[4] - An array that holds time information

PRIVATE METHODS DEFINED .
PtrTo - Returns a pointer to the element in current position
PUBLIC METHODS DEFINED

instanceClass - Default constructor

instanceClass - Copy constructor

~instanceClass - Destructor

ListIsEmpty - Test to see if no elements exist in list
ListLength - Number of items in list

ListInsert - Put an item into the list at position
ListDelete - Remove an item at position from list
ListRetrieve - Get an item at a specific position
ListUpdate - Updates item at a specific position

= - Assignment of one class object to another

displayInstanceList- Displays the list created

instanceComplete - Determines if all time positions are filled
in current instance

61

C. PATHTIMER MODULE

LIBRARIES INCLUDED
#include “pathDBInstance.h” - to access instanceClass list

TYPES DEFINED
None

PRIVATE METHODS DEFINED
None

PUBLIC METHODS DEFINED
calcTotalPathTime - Calculate total path time

D. EVALUATE AND ALERT MODULE

LIBRARIES INCLUDED
#include “specDB.h” - to access specDBClass list
#include “pathDBInstance.h” - to access instanceClass list

TYPES DEFINED
None

PRIVATE METHODS DEFINED
None

PUBLIC METHODS DEFINED

goodInstance - Calculates to see if path made deadline
evaluate - Checks to see if good instance

raiseFlag - Raises a flag if path latency exceeds deadline

E. CONTROL MODULE

LIBRARIES INCLUDED

“specDB.h” - to access specDBClass list
"pathDB.h" - to access pathDBClass list
<stdio.h> - for I/O

<stddef.h> - to define NULL
<errno.h> - for errors

<time.h> - to access time functions

62

<sys/types.h> - to access socket connections

<sys/socket.h> - same
<netinet/in.h> - same
<netdb.h> - same
TYPES DEFINED

None

PRIVATE METHODS DEFINED
None

PUBLIC METHODS DEFINED
None

63

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C. TPMS SOURCE CODE

A. SPECDB MODULE

/**

// FILE: specDB.cpp *
/7 *
// AUTHOR: Kendal Polk as a modification of Template from Data *
// Abstraction and Problem solving with C++ by Frank *
// Carrano, CH4,pplé6s. *
/7 *
// LAST MODIFIED: 6 June 2000 *
/7 *
// PURPOSE: This is the source file for operations necessary for the*
// specDB Module *
!/ *
/7 *

//'k***/

#include "specDB.h"

#include <fstream.h>
#include <stddef.h>
#include <assert.h>
#include <strings.h>

struct specDBNode {
specDBrec item;
specDBNodePtrType next;
1

//***

// SpecDBClass: Default constructor *

//***
SpecDBClass: : SpecDBClass (void) : size(0), head(NULL)

{
}

//***

// SpecDBClass: Copy constructor *
// *
// INPUT: const SpecDBClass& sourcelist - The source list to copy *
// LOCAL: specDBNodePtrType newPrev - The new list head *
// specDBNodePtrType origCur - local ptr *
// *

*

//**'k*********'**************

SpecDBClass: : SpecDBClass (const SpecDBClass& sourcelist):
size(sourcelist.size) ’

{
specDBNodePtrType newPrev, origCur;

65

if (sourcelist.head == NULL)
head = NULL;
else {
head = new specDBNode;
assert (head != NULL) ;
head->item = sourcelist.head->item;

newPrev = head;

for (origCur = sourcelist.head->next;
origCur != NULL;
origCur = origCur->next) {
newPrev->next = new specDBNode;
assert (newPrev->next != NULL);
newPrev = newPrev->next;
newPrev->item = origCur->item;
}
newPrev->next = NULL;
}
}// end

//***

// ~SpecDBClass: Destructor *

//***

SpecDBClass: : ~SpecDBClass (void)

{
int success;
while (!ListIsEmpty ())
ListDelete(l, success);
}

//***

// ListIsEmpty: Checks if the list is empty. *
// *
// RETURN: If list is empty the function returns TRUE, otherwise *
// it returns FALSE. *
// *

*

//**

int
SpecDBClass::ListIsEmpty (void)
{

return(size == 0);
}

66

//***

// ListLength: Returns the number of items in the list *
*

jj RETURN: Returns the number of nodes in the list. *

;;**:

int

SpecDRBClass: :ListLength(void)

{ return(size);

}

//***

// PtrTo: Find the requested node in the list. *
/7 *
// INPUT: int position - specifies the position of the requested *
/7 node. *
// *
// RETURN: If successful, returns a pointer to the requested node, *
// otherwise it returns 0. ' *
// *

*

//**

specDBNodePtrType
SpecDBClass: :PtrTo(int position)
{
specDBNodePtrType trav;
int skip;
if ((position < 1) || (position > ListLength()))
return (NULL) ;
else {

trav = head;

for (skip = 1; skip < position; skip++)
trav = trav->next;

return(trav) ;

67

//***

// ListRetrieve: Gets data from specified node. *
// *
// INPUT: int position - Position of node from which the data *
// is to be retrieved. *
// LOCAL: specDBNodePtrType cur - pointer to the desired item *
// OUTPUT: specDBrec& dataItem - The parameter into which the*
// desired item is retrieved *
// int& success - Returns TRUE if the retrieve*
// was successful, FALSE *
// otherwise *

//***

void
SpecDBClass::ListRetrieve(int position, specDBrec& dataltem,

{

int& success)

specDBNodePtrType cur;

success

= ((position >= 1) &&
(position <= ListLength()));

if (success) {

cur

PtrTo(position);

dataltem = cur->item;

}

return;

//*'A'***

//

INPUT:

LOCAL:

// ListInsert: Inserts new node into list. *
*

int newPosition - the position where to insert *

specDBrec newltem - The item to insert *

int newLength - list length after insertion *
specDBNocePtrType newPtr - node to hold new value *
specDBNodePtxType prev - points to previous node for*
reassigning pointers *

int& success - TRUE if the insert was *

OUTPUT:

successful, otherwise FALSE *

//***

void
SpecDBClass::ListInsert (int newPosition, specDBrec newItem,

€

int

int& success)

newLength;

specDBNodePtrType newPtr, prev;

newLength = ListLength() + 1;

success =((newPosition >= 1) &&

(newPosition <= newLength));

if (success) {

68

= newLength;

r = new specDBNode;
ss =(newPtr '= NULL);
success) {

newPtr->item = newltem;

size
newPt
succe
if (
if
}
}
}
}
return;

(newPosition == 1) {
newPtr->next = head;
head = newPtr;
else {
prev = PtrTo(newPosition - 1);
newPtr->next = prev->next;
prev->next = newPtr;

//**

//
/7
//

ListDelete: Delete node from the list. *
INPUT: int position - position of node to be deleted *
LOCAL: specDBNodePtrType cur - saved pointer (to head or *
next) *

specDBNodePtrType prev - pointer to the previous cell*

OUTPUT: int& success - TRUE if the delete was *
successful FALSE otherwise*

//**

void
SpecDBClass: :ListDelete(int position, int& success)

{

specDBNodePtrType cur, prev;

success

= ((position >= 1) &&
(position <= ListLength()));

if (success) {

size--;
if (position == 1) {
cur = head;
head = head->next;
} else {
prev = PtrTo(position - 1);
cur = prev->next;

prev->next

}

cur->next;

cur->next = NULL;
delete cur;

cur

= NULL;

69

//***

// SpecDBClass: assignment = *
// *
// INPUT: const SpecDBClass& sourcelist - The source list to copy *
// LOCAL: specDBNodePtrType newPrev - The new list head *
// specDBNodePtrType origCur - local ptr *
// *
*

//**

void
SpecDBClass: :operator=(const SpecDBClass& sourcelist)

{

specDBNodePtrType newPrev, origCur;
size = sourcelist.size;
if (sourcelist.head == NULL)
head = NULL;
else {
head = new specDBNode;
assert (head != NULL);
head->item = sourcelist.head->item;

newPrev = head;

for (origCur = sourcelist.head->next;
origCur != NULL;
origCur = origCur->next) {
newPrev->next = new specDBNode;
assert (newPrev->next != NULL);
newPrev = newPrev->next;

newPrev->item = origCur->item;

}

newPrev->next = NULL;

}

//***

// displayList: Displays the list created *
// LOCAL: int position - the position where to display node *
// int success - true when node retrieved *
// specDBrec DBrec - the item to display *

//'k**

void SpecDBClass::displayList ()
{ . .
specDBrec DBrec;
int position = 1;

int success;

while(position <= ListLength())
{

ListRetrieve (position, DBrec, success);

70

cout<<"\n Path " << DBrec.pathlID;
cout<<” Length " << DBrec.pathLength;

cout<<" sec=> "<<DBrec.deadline.tv_sec<<", usec => ";
cout<<DBrec.deadline.tv_usec<<endl;

for (int appPos= 0;appPos < DBrec.pathlLength; ++appPos)
{

cout<<" App - "<<DBrec.applicationIDArray[appPos];
}
position++;
}//while
cout<<endl;

}//end

//**

// createSpecDB: Builds the spec DB from input file

// INPUT:

// LOCAL:

//***

char* inputfile - the name of the file used to
build database

specDBrec DBrec - Item to insert into the list

applicationID tempName[25] - Used to hold name of app

int success - true if node inserted in list

void SpecDBClass::createSpecDB(char *inputfile)

{

specDBrec DBrec;

char tempName[25];

int success;

//open an input data file containing information on how the paths

// are constructed
// and deadline information

ifstream specDBInputFile(inputfile,ios::in);

//populate the Database
while (specDBInputFile >> DBrec.pathID)

{

specDBInputFile >> DBrec.pathLength;
specDBInputFile >> DBrec.deadline.tv_sec;
specDBInputFile>> DBrec.deadline.tv_usec;

DBrec.applicationIDArray = new
applicationID[DBrec.pathLength];

//populate the array with application IDs
for (int count=0; count< DBrec.pathlLength; count++)

{

71

*
*
*
*
*
*
*
*

specDBInputFile >>tempName;

DBrec.applicationIDArray([count] = strdup (tempName) ;

ListInsert(ListLength()+1,DBrec, success);

}//while

specDBInputFile.close();

}//end

//***‘k*************************

// find PathiID:
//

// INPUT: int application -~ the number of the application

// LOCAL: specDBrec DBrec - Item to search for a applicationID
// int appNum - Used to hold positions

// int specDBposition - Used to hold positions

// int success - true if node inserted in list

// found - true if application found in path

Finds Path Identification number based on
application ID

// RETURN: the pathID of the input application

//**

int SpecDBClass
{ specDBrec
int
int
int

int

: :findPathID(applicationID application)
DBrec;
appNum;
specDBposition = 1;
success;

found = 1;

//Get a Path record and go the list of applications
//to see if it is the correct one.

while((specDBposition <= ListLength()) && (found !=0))

{

ListRetrieve(specDBposition, DBrec, success);

int

appArrayPos = 0;

while ((found!=0) && (appArrayPos < DBrec.pathLength)

{

found =strcmp

(DBrec.applicationIDArray[appArrayPos] ,application);
appArrayPos++;

}//while

specDBposition++;//continue through all paths if necessary

12

)

*
*
*
*
*
*
*
*
*
*

}//while

return DBrec.pathlID;

}//end
//**
// appPositionInPath: Finds application position in path *
// INPUT: int reportingApplication - the number of the application *
// specDBposition - position in specDB *
// LOCAL: specDBrec DBrec - Item to search for applicationID*
// int appArrayPos ~ Used to hold positions *
// int success - true if node inserted in list *
// found - true if reportingApplication is *
// found in a path *
// RETURN: the path location of the input application *
*

//***

int SpecDBClass::appPositionInPath(applicationID reportingApplication,
int specDBposition)

{ specDBrec DBrec;
int success;
int found = 1;
int appArrayPos = 0;

//g0 to correct path based on specDBposition

ListRetrieve(specDBposition, DBrec, success);

//find application position in that path
//strcmp function returns a zero if strings match

while ((found != 0) && (appArrayPos < DBrec.pathLength))
{

found = strcmp(DBrec.applicationIDArraylappArrayPos],
reportingApplication);

//since Array enumeration is 1 less than logical position -
increase
//appArrayPos even if found == true

appArrayPos++;

// if entire array searched with no result then return a -1

73

return(found==0 ? appArrayPos: -1);

}Y//end

//**

// getDeadline: Based on path ID returns deadline information %*
// INPUT: int path ID - the number of the path *
// LOCAL: specDBrec DBrec - Item to search for applicationID *
// int success - true if node inserted in list *
// found in a path *
// RETURN: the path deadline information *

*

//********************-k**

timeType SpecDBClass::getDeadline({int pathID)

{ specDBrec tempDBrec;
int success;
ListRetrieve (pathlD, tempDBrec, success) ;
return (tempDBrec.deadline);

}//end

B. PATHDB MODULE

1. PathDB Source Code

/**

// FILE: pathDB.cpp *
// *
// AUTHOR: Kendal Polk as a modification of Template from Data *
// Abstraction and Problem solving with C++ by Frank *
// Carrano, CH4,ppl65. *
// *
// LAST MODIFIED: 6 June 2000 *
// *
// PURPOSE: This is the source file for operations necessary for the*
// pathDB Module *
// *
// *

//**/

#include <iostream.h>
#include <fstream.h>
#include <stddef.h>
#include <assert.h>
#include "pathDB.h"
#include "pathTimer.h"
#include "pathDBInstance.h"

struct pathDBNode {

pathRec item;
pathDBNodePtrType next;

74

}i

//***

// pathDBClass: Default constructor

//***

pathDBClass: :pathDBClass (void): size(0), head(NULL)
{
}

//***

// pathDBClass: Copy constructor

//

// INPUT: const pathDBClass& sourcelist - The source list to copy
// LOCAL: ptrType newPrev - The new list head

!/ ptrType origCur - local ptr

//

: //**

pathDBClass: :pathDBClass (const pathDBClass& sourcelist):
size(sourcelist.size)
{
pathDBNodePtrType newPrev, origCur;
if (sourcelist.head == NULL)
head = NULL;
else {
head = new pathDBNode;
assert (head != NULL);
head->item = sourcelist.head->item;

newPrev = head;

for (origCur = sourcelist.head->next;
origCur != NULL;
origCur = origCur->next) {
newPrev->next = new pathDBNode;
assert (newPrev->next != NULL) ;
newPrev = newPrev->next;
newPrev->item = origCur->item;

}

newPrev->next = NULL;
}
}// end

*

*
*
*
*
*
*
*

//***

// ~pathDBClass: Destructor

*

//***

pathDBClass: :~pathDBClass (void)
{

int success;

75

while (!ListIsEmpty())
ListDelete(l, success);

//***

// ListIsEmpty: Checks if the list is empty. *
// *
// RETURN: If list is empty the function returns TRUE, otherwise *
// it returns FALSE. *
// *

*

//**

int
pathDBClass: :ListIsEmpty(void)
{
return(size == 0);
}

//***

// ListlLength: Returns the number of items in the list *
7l *
// RETURN: Returns the number of nodes in the list. *
// *

//***

int
pathDBClass: :ListLength(void)
{

}

return(size);

//***

// PtrTo: Find the requested node in the list. *
!/ *
// INPUT: int position - pathifies the position of the requested *
!/ node. *
// *
// RETURN: If successful, returns a pointer to the requested node, *
// otherwise it returns O. *
// *

*

//**

pathDBNodePtrType
pathDBClass: :PtrTo(int position)
{
pathDBNodePtrType trav;
int skip;

76

if ((position < 1) || (position > ListLength()))
return (NULL) ;
else {
trav = head;

for (skip = 1; skip < position; skip++)
trav = trav->next;

return(trav);

//**

// ListRetrieve: Gets data from specified node. *
// *
// INPUT: int position - Position of node from which the *
// data is to be retrieved. *
// *
// LOCAL: pathDBNodePtrType cur - pointer to the desired item *
// OUTPUT: pathDBrec& dataltem - The parameter into which the *
// desired item is retrieved *
// inté& success - Returns TRUE if the retrieve *
// was successful, FALSE *
// otherwise *
//************************'k********************’k************************

void
pathDBClass: :ListRetrieve(int position, pathRec& dataltem,
int& success)

{
pathDBNodePtrType cur;

succesé = ((position >= 1) &&
(position <= ListLength()));

if (success) {

cur = PtrTo(position);
dataltem = cur->item;

}

return;

77

//**

// ListUpdate: Updates data from specified node. *
// *
// INPUT: int position - Position of node from which the *
// data is to be updated. *
// Reference to data-item to *
// which the data from the node is to be *
// copied. *
// pathDBrec& dataItem - The parameter into which the *
// desired item is retrieved/updated. *
// *
// LOCAL: pathDBNodePtrType cur - pointer to the desired item *
// *
// OUTPUT: int& success - Returns TRUE if the update was successful *
// FALSE otherwise *

*

//***

void
pathDBClass::ListUpdate(int position, pathRec& dataltem,
int& success)
{
pathDBNodePtrType cur;

success = {(position >= 1) &&
(position <= ListLength()));

if (success) {
cur = PtrTo(position);
cur->item = dataltem;

}

return;

}

//***

// ListInsert: Inserts new node into list. *
// *
// INPUT: int newPosition - the position where to insert *
// the new node *
// pathDBrec newltem - The item to insert *
// *
// LOCAL: int newLength - list length after insertion *
// pathDBNocePtrType newPtr - node to hold new value *
// pathDBNodePtrType prev - points to previous node for *
// reassigning pointers *
// *
// OUTPUT: int& success - TRUE if the insert was successful, *
7/ otherwise FALSE *
// *

*

//**

void
pathDBClass: :ListInsert (int newPosition, pathRec newItem,
int& success)
{
int newLength;
pathDBNodePtxrType newPtr, prev;

78

newLength = ListLength() + 1;

success =({newPosition >= 1) &&

(newPosition <=

{
newLength;

if (success)
size

newPtr
success ={(newPtr

if (success) {
newPtr->item

if (newPosition == 1)

newPtr->next
head
} else {
prev
newPtr->next
prev->next

}

return;

}

//**

newLength))} ;

new pathDBNode;
{= NULL) ;

newltem;

{
head;
newPtr;

PtrTo (newPosition - 1);
prev->next;
newPtr;

// ListDelete: Delete node from the list.
//
// INPUT: int position - position of node to be deleted.
// LOCAL: pathDBNodePtrType cur - saved pointer (to head or next)
// pathDBNodePtrType prev- pointer to the previous cell
// OUTPUT: int& success - TRUE if the delete was successful,
// FALSE otherwise.
//
//***
void
pathDBClass::ListDelete(int position, int& success)
{
pathDBNodePtrType cur, prev;
success = ({(position >= 1) &&

if (success) {
size--;
if (position == 1)
cur = head;
head = head->next;
} else {
prev =
cur = prev-

prev->next

(position <= ListLength()));

{

PtrTo(position - 1);

>next;

cur->next;

79

}

}

cur->next = NULL;
delete cur;
cur = NULL;

//***

// pathDBClass: assignment =

*

// *
// INPUT: const pathDBClass& sourcelist - The source list to copy *
// LOCAL: pathDBNodePtrType newPrev - The new list head *
// pathDBNodePtrType origCur - local ptr *
*
;;***
void
pathDBClass: :operator=(const pathDBClass& sourcelist)
{
pathDBNodePtrType newPrev, origCur;
size = sourcelist.size;
if (sourcelist.head == NULL)
head = NULL;
else {
head = new pathDBNode;
assert (head != NULL);
head->item = sourcelist.head->item;
newPrev = head;
for (origCur = sourcelist.head->next;
origCur '= NULL;
origCur = origCur->next)} {
newPrev->next new pathDBNode;
assert (newPrev->next != NULL);
newPrev = newPrev->next;
newPrev->item = origCur->item;
}
newPrev->next = NULL;
}
}

//**

// displayList: Displays the list created * -
position - the position where to dispay node *

/7
/7
//

LOCAL: int

pathDBrec

success
DBrec

- true when node retrieved form list*
- the item to display *

//**

void pathDBClass::displayPathList ()

{

pathRec

pathDBrec;

80

int position = 1;
int success;

while(position <= ListLength())

{
ListRetrieve(position, pathDBrec, success);
cout<<"\n Path " << pathDBrec.pathID;
cout<<" Length " << pathDBrec.pathLength;
pathDBrec.instancelList.displayInstancelList();
position++;

}//while

}//end

//**

createPathDB: Builds the spec DB from input file

//

INPUT:

LOCAL:

char* inputfile
build the database
pathrec tempPath

int success
position - retrieval point

- the name of the file used to

- Item to insert into the list
specDBRec DBrec - Used to hold temporary information
- true if node inserted in list

* Ok % X ¥ %

//**

void pathDBClass::createPathDB(SpecDBClass inputList)

{

pathRec tempPath;

specDBrec DBrec;

int

int

success;

position = 1;

while(position <= inputList.ListLength())

{

inputList.ListRetrieve(position, DBrec, success);

tempPath.pathID = DBrec.pathID;

tempPath.pathLength = DBrec.pathLength;

81

*

position++;
ListInsert(ListLength{()+1, tempPath, success);
}//while

}//end

//**

// addAppTime: Inserts new time in instance list. *
// INPUT: char appStatus - signals start or stop of an application *
// applicationID reportingApplication - reporting app number*
// timeval currentTimePtr- pointer to current time value*
// specDBList inputlist - accessed to determine *
// deadline *
// LOCAL: int PathID - ID of path *
// instanceInsertionPoint- shows where to place in *
// list *
// pathPosition - identifies app position in path¥*
// currentPosition- counter for moving through list*
// timeArrayLength- length of array of times *
// totalInstances - used to compare against counter*
// timeArrayInsert- position to insert in timearray*
// success - used as a boolean *
// instanceDone - used as a boolean *
// timeInserted - used as a boolean *
// *
// pathDBrec tempPathRec - temporary path DB record *
// *
// specDBrec tempDBrec - temporary spec DB record *
// *
// timeType TPT - total path time *
// deadline - deadline for the path *
// *
// instance firstInstance - used to create an instance *
// currentInstance- used to manipulate an instance *
// *
// pathDBNodePtrType updatePathPtr- walks down path *
// list *

*

//***

void pathDBClass::addAppTime(char appStatus,
applicationID reportingdpplication,
timeval* currentTimePtr, SpecDBClass inputList)
int PathID, instanceInsertionPoint, pathPosition;
int currentPosition = 1;
int timeArrayLength, totalInstances,timeArraylInsert;

int success, instanceDone;

int timeInserted = 0;

82

pathRec tempPathRec;

specDBrec tempDBrec;

timeType TPT,deadline;

instance firstInstance,currentInstance;

pathDBNodePtxrType updatePathPtr;

//find the Path the application belongs to
PathID = inputList.findPathID(reportingApplication);

//get correct path
updatePathPtr = PtrTo(PathlID);

//determine how many applications in the Path
timeArrayLength= updatePathPtr->item.pathlLength - 1;
//find the position of the application in the path

pathPosition = inputList.appPositionInPath
(reportingApplication, PathID);

#ifdef TPMS_DEBUG .
cout<<"pathPosition = "<<pathPosition<<"\n";
#endif .

//is this the first application of the path?

if((pathPosition == 1)&& (appStatus == ‘D’))
{

//1if this is the first application of the path AND it
// reporting that it is starting then
//create an instance and put this time in it.
// create an instance
cout<<"creating new Instance\n";
instanceInsertionPoint = updatePathPtr->

item.instancelList.ListLength()+1;
success=(firstInstance.timeArray != NULL);

#ifdef TPMS_DEBUG

if (success) cout<<"success with time"<<endl;

#endif

//correct for a negative fraction of second
if (currentTimePtr->tv_usec < 0) {

83

is

if (currentTimePtr->tv_sec >= 0){
currentTimePtr->tv_sec -= 1;
currentTimePtr->tv_usec += 1000000;

}
else(
currentTimePtr->tv_usec *= -1;
}//end if-else
}
else if(currentTimePtr->tv_sec < 0){
currentTimePtr->tv_sec += 1;
currentTimePtr->tv_usec = 1000000 -
currentTimePtr->tv_usec;
}//end if

firstInstance.timeArray[0]= *currentTimePtr;

firstInstance.appCounter = 1;

updatePathPtr->item.instancelList.ListInsert
(instancelnsertionPoint, firstInstance, success);

}//end if

else if (pathPosition /= 1)
//this is not the first application and we must find the location
// for this application time IF it is a application complete time

{

totalInstances = updatePathPtr->
item. instancelist.ListLength() ;

#ifdef TPMS_DEBUG
cout<<totalInstances<<" = TotalInst "<<"\n";
#endif
while((currentPosition <= totallInstances) && !timelInserted)
{
//get the list of instances from the correct path

updatePathPtr->item.instancelList.ListRetrieve
(currentPosition,currentInstance, success) ;

//determine if the app time goes to this instance

if ((pathPosition - currentInstance.appCounter)==1)

{
//place this application time in the correct

//time position

timeArrayInsert = currentInstance.appCounter;

84

}//end

currentInstance.timeArray[timeArraylnsert]=
*currentTimePtr;

currentInstance.appCounter++;
timeInserted = 1;

//Update new list information
updatePathPtr->item. instancelList.ListUpdate
(currentPosition, currentInstance, success) ;

instanceDone = updatePathPtr->
item.instanceList.instanceComplete
{(updatePathPtr->item.pathLength, currentInstance);

if (instanceDone)
{

TPT = calcTotalPathTime(currentInstance);
#ifdef TPMS_DEBUG

cout<<" I am here in instanceDone\n";
#endif

deadline = inputList.getDeadline(PathID);
evaluate (deadline, TPT) ;
updatePathPtr->item.instancelist.

ListDelete(l, success) ;
y//7if

}//end if

if (!timeInserted)

}//while

}//if-else

currentPosition++;

//continue to next position in list
//if location for time not found here

85

2.

PathDBInstance Source Code

/**

// FILE: pathDBInstance.cpp

/7

// AUTHOR: Kendal Polk as a modification of Template from Data
Abstraction and Problem solving with C++ by Frank

Carrano, CH4,ppl65.

// LAST MODIFIED: 6 June 2000

* % F ¥ ok ¥ ¥ *

// PURPOSE: This is the source file for operations necessary for the*

/7

pathDBInstance Module

*
*
*

//**/

#include
#include
#include
#include

"specDB.h"
<stddef.h>
<assert.h>
"pathDBInstance.h"

struct instanceNode {

instance

instanceNodePtrType next;

};

item;

//***

// pathDRBRClass:

Default constructor

*

//***

instanceClass: :instanceClass (void) :

{
}

size(0),

head (NULL)

//***

// pathDBClass: Copy constructor

/7

// INPUT:
// LOCAL:

//
/7

//**

instanceClass: :instanceClass (const instanceClass& sourcelist):

const pathDBClass& sourcelist - The source list to copy
- The new list head
- local ptr

ptrType newPrev
ptrType origCur

size(sourcelist.size)

{

86

*
*
*
*
*
*
*

instanceNodePtrType newPrev, origCur;

if (sourcelist.head == NULL)
head = NULL;
else {
head = new instanceNode;
assert (head != NULL);
head->item = sourcelist.head->item;

newPrev = head;

for { origCur = sourcelist.head->next;
origCur != NULL;
origCur = origCur->next)} {
newPrev->next = new instanceNode;
assert (newPrev->next != NULL);
newPrev = newPrev->next;
newPrev->item = origCur->item;
}
newPrev->next = NULL;
} ‘ .
}// end

//***

// ~pathDBClass: Destructor *

//*********************************'k*******':\'*************************

instanceClass: :~instanceClass (void)

{
int success;
while (!ListIsEmpty ())
ListDelete(l, success);
}

//***‘k***********

// ListIsEmpty: Checks if the list is empty. *
// *
// RETURN: If list is empty the function returns TRUE, otherwise *
// it returns FALSE. *
// *

*

//**

int
instanceClass: :ListIsEmpty (void)
{
return(size == 0);
}

87

//***

// ListLength: Returns the number of items in the list *
// *
// RETURN: Returns the number of nodes in the list. *
// *

//*************************-k***

int

instanceClass: :ListLength (void)

{

return(size);

}

//***

// PtrTo: Find the requested node in the list. *

// *

// INPUT: int position - identifies the position of the requested *

1/ node. *

/! *

// RETURN: If successful, returns a pointer to the requested node, *

// otherwise it returns 0. *

// *
*

//**

instanceNodePtrType
instanceClass: :PtrTo(int position)
{
instanceNodePtrType trav;
int skip;
if ((position < 1) || (position > ListLength()))
return (NULL) ;
else {

trav = head;

for (skip = 1; skip < position; skip++)
trav = trav->next;

return(trav) ;

//***

// ListRetrieve: Gets data from specified node. *
// *
// INPUT: int position - Position of node from which the *
// data is to be retrieved. *
// *
// LOCAL: ptrxType cur - pointer to the desired item *
// OUTPUT: instance& dataltem - The parameter into which the *
// desired item is retrieved *
// int & success - Returns TRUE if the retrieve *
// was successful, FALSE *
// otherwise *

*

//**

88

void
instanceClass::ListRetrieve(int position, instance& datalItem,

{

int& success)
instanceNodePtrType cur;

success = ((position >= 1) &&
(position <= ListLength()));

if (success) {
cur = PtrTo(position);
dataIltem = cur->item;

}

return;

//***

//

//**

ListUpdates: Updates data from specified node.
INPUT: int position - Position of node from which the
data is to be retrieved.
instance dataltem - The parameter into which the
: desired item is retrieved
LOCAL: instanceNodePtrType cur- pointer to the desired item

OUTPUT: int & success - Returns TRUE if the retrieve

was successful, FALSE
otherwise

void
instanceClass: :ListUpdate(int position, instance dataltem,

{

int& success)
instanceNodePtrType cur;

success = ((position >= 1) &&
(position <= ListLength()));

if (success) {
cur = PtrTo(position);
cur->item = dataltem;

}

return;

89

*
*
*
*
*
*
*
*
*
*
*
*

//***

// ListInsert: Inserts new node into list. *
// *
// INPUT: int newPosition - the position where to insert *
// the new node *
// instance newltem - The item to insert *
// *
// LOCAL: int newLength - list length after insertion *
// instanceNodePtrType newPtr- node to hold new value *
// prev - points to previous node for *
// reassigning pointers *
// *
// OUTPUT: int& success - TRUE if the insert was *
// successful, otherwise FALSE *
// *

*

//**

void
instanceClass::ListInsert (int newPosition, instance newItem,
int& success)
{
int newlLength;
instanceNodePtrType newPtr, prev;

newLength = ListLength() + 1;

success =((newPosition >= 1) &&
(newPosition <= newLength));

if (success) {
size = newLength;

newPtr = new instanceNode;
success =(newPtr != NULL);
if (success) {

newPtr->item = newlItem;

if (newPosition == 1) {
newPtr->next = head;
head = newPtr;
} else {
prev = PtrTo(newPosition - 1);
newPtr->next = prev->next;
prev->next = newPtr;
}
}
}
return;

90

//***

//
//
/7
/7
/7
/7
//
/7

ListDelete: Delete node from the list. *
*

INPUT: int position - position of node to be deleted. *
LOCAL: instancNodePtrType cur - saved pointer (to head or next)*
prev- pointer to the previous cell *

OUTPUT: int& success -~ TRUE if the delete was successful, *
FALSE otherwise. *

*

*

//**

void
instanceClass::ListDelete(int position, inté& success)

{

instanceNodePtrType cur, prev;

success

if (success) {
size--;

if (position ==)

({position >= 1)

&&
(position <= ListLength()));

{

= PtrTo(position - 1);
= prev->next;

>next;

cur = head;

head = head->next;
} else {

prev

cur

prev->next = cur-
}
cur->next = NULL;
delete cur;
cur = NULL;

//***

// instanceClass: assignment =

//
//

// LOCAL: instanceNodePtrType newPrev
instanceNodePtrType origCur

//
/7

INPUT: const

instanceClassé& sourcelist - The source list to copy

- The new list head
- local ptr

* ok ok * ok *

//***

void
instanceClass: :operator=(const instanceClass& sourcelist)

{

instanceNodePtrType newPrev,

size = sourcelist.size;
if |

head = NULL;
else {

sourcelist.head ==

origCur;

NULL)

91

head = new instanceNode;
assert (head != NULL);
head->item = sourcelist.head->item;

newPrev = head;

for (origCur = sourcelist.head->next;
origCur != NULL;
origCur = origCur->next) {
newPrev->next = new instanceNode;
assert (newPrev->next != NULL);
newPrev = newPrev->next;

newPrev->item = origCur->item;

}

newPrev->next = NULL;

//**

// displayInstanceList: Displays the list created *
// LOCAL: int instancePosition ~ the position where to dispay node*
// timeType timeTemp - temp variable for time instance *
// int timePosition - counter for time position in array*
// int success - true when node retrieved form list*
// instance instanceTemp - the item to display *

//**

void instanceClass::displayInstancelist ()
{

instance instanceTemp;
timeType timeTemp;

int instancePosition = 1;
int timePosition = 0;

int success;

while(instancePosition <= ListLength())

{

ListRetrieve(instancePosition, instanceTemp, success);
while (timePosition < instanceTemp.appCounter)

éimeTemp = instanceTemp.timeArray{timePosition];

//1 added to timePosition because the array begins at zero
cout<<" T"<<timePosition + 1<<' ';

cout<<"sec=> "<<timeTemp.tv_sec<<", usec => ";

cout<<timeTemp.tv_ usec<<endl;

timePosition++;
}//while

92

timePosition = 0;
instancePosition++;

}//while
}//end
//**
// instanceComplete: Determines if all time positions in array are *
// filled *
// RETURN: pathLength==number of applications found in current instance*
!/ int success - true when node retrieved form list *

//**

int instanceClass::instanceComplete (int pathLength, instance
currentInstance)

{
}

return (pathLength == currentInstance.appCounter);

C. PATHTIMER MODULE

/**

// FILE: pathTimer.cpp *
// *
// AUTHOR: Kendal Polk *
// *
// LAST MODIFIED: 6 June 2000 *
/7 *
// PURPOSE: This is the source file for operations necessary for the*
// pathTimer Module *
// *
// *

//**/

#include "pathTimer.h"

//**

// calcTotalPathTime: Based on current path instance calculates the *
// total path time (TPT) *
// *
// INPUT: instance currentInstance *
// int lastAppPosition *
/7 *
// LOCAL: timetype firstAppTime *
// lastAppTime *
// returnApp *
// *
// RETURN: TPT (returnApp) *

*
;;**

timeType calcTotalPathTime (instance currentInstance)

{
timeType firstAppTime, lastAppTime,returnBpp;

93

int lastAppPosition;

lastBAppPosition = currentInstance.appCounter - 1;

firstAppTime = currentInstance.timeArray(0];
lastAppTime = currentInstance.timeArray[lastAppPosition];
returnBApp.tv_sec = (lastAppTime.tv_sec - firstAppTime.tv_sec);

returnApp.tv_usec= (lastAppTime.tv_usec- firstAppTime.tv_usec);

//correct for a negative fraction of second
if (returnApp.tv_usec < 0){

if (returnBpp.tv_sec >= 0) {
returnApp.tv_sec -= 1;
returnApp.tv_usec += 1000000;
}
else({
returnApp.tv_usec *= -1;
}//end if-else
}
else if(returnApp.tv_sec < 0){
returnApp.tv_sec += 1;
returnApp.tv_usec = 1000000 - returnApp.tv_usec;
}//end if

return (returnApp) ;
}// end

D. EVALUATE AND ALERT MODULE

/**

// FILE: evalalert.cpp *
// *
// AUTHOR: Kendal Polk as a modification of Template from Data *
// Abstraction and Problem solving with C++ by Frank *
// Carrano, CH4,ppl65. *
// *
// LAST MODIFIED: 6 June 2000 *
// *
// PURPOSE: This is the source file for operations necessary for the*
// evalalert Module *
// *
// *

//**/

#include "evalalert.h"
#include "pathDBInstance.h"

94

//**

// goodInstance: Based on totalpathtime (TPT) and path deadline, this*

!/ function returns true if TPT <= deadline *
// *
// INPUT: timetype totalPathTime *
/! deadline *
// *
// RETURN: 1 for true and 0 for false *
// *

*

//***
int goodInstance (timeType totalPathTime, timeType deadline)

{ .
int good = 0;

cout<<totalPathTime.tv_sec<<" TPT "<<deadline.tv_sec<<" DL
secs\n";

cout<<totalPathTime.tv_usec<<" TPT "<<deadline.tv_usec<<" DL
secs\n";

if (totalPathTime.tv_sec > deadline.tv_sec) {
good = 0;
}
else
if ({totalPathTime.tv_sec == deadline.tv_sec) &&
(totalPathTime.tv_usec > deadline.tv_usec)) {
good=0;

}//if-else

return(good) ;
}//end

//**

// evaluate : Based on false result from goodInstance rasies flag *
// *
// INPUT: timetype totalPathTime *
// deadline *

//**
void evaluate (timeType deadline, timeType totalPathTime)

{

#ifdef TPMS_DEBUG
cout<<" I am here in evalalert\n";
#endif

//lets see if this is a good instance

95

if (!goodInstance(totalPathTime,deadline))
{

raiseFlag();
}//end if
}//end

//*’***

// raiseFlag : This function emulates the identification of path not *
// meeting its defined dealine. Actions derived from this*

// function should be defined in later work. *
//**

void raiseFlag()

{
cout<<"\n Flag Raised \n";
//Should be developed later;

}//end

E. CONTROL MODULE

/**

// FILE:tpms.cpp *
// *
// AUTHOR: Kendal Polk *
// *
// LAST MODIFIED: 21 June 2000 *
// *
// PURPOSE: This is the entry point for "wrapped" applications to *
// report their start and completion within their respective*
// paths. This file represents the control module in the *
/7 TPMS architecture. *
// *

//**/

#include "specDB.h"
#include <stddef.h>
#include "pathDB.h"
#include <sys/types.h>
#include<sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <time.h>
#define BUFLEN 14
//#define TPMS_DEBUG //uncomment here to receive debug statements

96

char appStatus;

int main(int argc,char* argvi(])

{

SpecDBClass specDBList;
pathDBClass pathDBList;

//make the spec Database
specDBList.createSpecDB(argvil]);
specDBList.displayList();

//build the initial path Database
pathDBList.createPathDB (specDBList) ;

pathDBList.displayPathList () ;

//set up to receive input from "wrapped" applications

struct timeval currentTime,
*currentTimePtr = ¤tTime;

struct timezone timeZone,
*timeZonePtr = &timeZone;

int sockMain, addrxLength, msgLength;

struct sockaddr_in servAddr, clientAddr;

char buf [BUFLEN], *leftPtr, *timePtr;

if ((sockMain=socket (AF_INET, SOCK_DGRAM, 0)) <0)
{perror ("could not get sockect.\n");
exit(l);
}

bzero((char*) &servAddr, sizeof (servAddr));

servAddr.sin_family = AF_INET;
servAddr.sin_addr.s_addr =htonl (INADDR_ANY) ;

//this port is hardcoded so that wrapped appllcatlons know
// to send their QoS output
servAddr.sin_port=50001;

if (bind(sockMain, (struct sockaddr *)&servAddr, sizeof (servAddr))<0)

97

{perror{"Can’t get port.\n");
exit(l);
}

addrLength = sizeof (servAddr);
if (getsockname (sockMain, (struct sockaddr *)&sexrvAddr, &addrLength))

{perror (" getsockname failed.\n");
exit(1l);
}

printf("\nserver: port Number is %d\n", ntohs(servAddr.sin_port));

//This infinite loop listens on the specified socket for reports
// from the Clients Libraries reporting from wrapped applications

for (;;)({

addrLength =sizeof(clientAddr);
if (! (bzero (buf,BUFLEN))){
printf("ouch \n");}

if ((msglLength =recvfrom(sockMain,buf, BUFLEN,O,
(struct sockaddr *)&clientAddr,
&addrLength)) <0)
{perror ("bad client socket\n");
exit (1) ;
}//perror

#ifdef TPMS_DEBUG
printf("\nserver: Client’s IP address is: %s ",
inet_ntoa(clientAddr.sin_addr));

printf (" port: %4 \n", ntohs(clientAddr.sin_port));
#endif

//determine the event character
appStatus = buf[0];

// determine the ID of the application
applicationID appID = &buf[l];

//get reporting time from host computer
gettimeofday (currentTimePtr, timeZonePtr);

pathDBList.addAppTime (appStatus, appID,currentTimePtr, specDBList) ;
#ifdef TPMS_DEBUG
pathDBList.displayPathList () ;
#endif
}Y//for

return 0;
Y//

98

[CARR96]

[CASE91]

[CHAT98]

[CINC97]

[CLARY97]

[DEIT98]

[DESI9g]

[DESI98]

[DRAK99]

[EADS98]

[FAR 96]

LIST OF REFERENCES

Frank Carrano, Data Abstraction and Problem Solving with C++,
Benjamin/Cummings Publishing Co., California,1995.

Fred Case, Christopher Hines, and Steven Satchwell, Analysis of Air
Operations During Desert Shield / Desert Storm, U.S. Air Force
Studies and Analyses Agency, 1991.

Saurav Chatterjee, Dynamic Application Structuring on
Heterogeneous, Distributed Systems, SRI International, Menlo Park,
California, 1998.

Joint IT-21 Message CINCLANFLT/CINCPACFLT, Information
Technology for the 21" Century, Pearl Harbor, HI, Mar 97.

Raymond Clark, E. Douglas Jensen, Arkady Kanevsky, John Maurer,
Paul Wallace, An Adaptive, Distributed Airborne Tracking System,
The MITRE Corporation, Bedford Massachusetts, 1997.

H.M. Deitel, P.J. Deitel, C++ How to Program, Prentice Hall, New
Jersey, 1994. :
Dr. Roberto Desimone, Andrew Preece, and Simon Hall, Improving
Command Decision Making through the Integration of Joint Planning
Aids into C2 Systems, Proceedings of the 1998 Command and Control
Research and Technology Symposium, Naval Postgraduate School,
Monterey, California, 1998.

Desiderata: Resource and QoS Management for Dynamic, Scalable,
Dependable, Real-Time Systems, Department of Computer Science and
Engineering, University of Texas at Arlington, 1998.

Tim Drake, Distributed Real Time Application Emulator, Master’s
Thesis, NPS Monterey, CA, September 1999.

Teledyne Brown Engineering, EADSIM Version 7.0, August 1998.

Federal Acquisition Regulations. Washington, DC: General Services
Administration, 1996.

99

[FRAS99]

[FREU98]

[HENS99]

[HUNT99]

[HUSTOO]

[JAINOI1]

[JONG99]

[KIDD96]

[KIDD99]

[OBER97]

[PORT99]

Tim Fraser, Lee Badger, and Mark Feldman, “Hardening COTS
Software with Generic Software Wrappers,”IEEE Symposium on
Security and Privacy, 9-12 May, 1999, Oakland, California

R. F. Freund and others, Scheduling Resources in Multi-user,
Heterogeneous, Computing Environments with SmartNet, Proceedings
Eighth Heterogeneous Computing Workshop, IEEE Computer Society,
Los Alamitos, California, March 1998.

Debra A. Hensgen and others, An Overview of MSHN: The
Management System for Heterogeneous Networks, Proceedings
Eighth Heterogeneous Computing Workshop(HCW ’99), IEEE
Computer Society, Los Alamitos, California, 1999.

Galen Hunt, Doug Brubacher, “Detours: Binary Interception of Win32
Functions”, Microsoft Research, Washington, February 1999.

Geoff Huston, ”Quality of Service—Fact or Fiction?”,Cisco
Publications,March 2000.

Raj Jain, The Art of Computer Systems Performance Analysis, John
Wiley and Sons, Inc., New York, 1991.

Jong-Kook Kim and others, Priorities, Deadlines, Versions, and
Security in a Performance Measure Framework for Distributed
Heterogensous Networks. In preparation for submission (1999).

Taylor Kidd, Debbie Hensgen, Richard Freund, and Lantz Moore,
“SmartNet: A Scheduling Framework for Heterogeneous Computing,”
ISPAN, 1996.

Taylor Kidd and others, Compute Characteristics, Technical Report in
progress, Naval PostGraduate School, Monterey, California, 1999.

Tricia Oberndorf, COTS and Open Systems—An Overview, Carnegie
Mellon University, 1997.

N. Wayne Porter, Resource Usage for Adaptive C4I Models in a

Heterogeneous Cosmputing Environment, Master’s Thesis, Naval
Postgraduate School, Monterey, California, June 1999.

100

[SCHNO8]

[SKID99]

[SLED98]

[SONAOO]

[UTAR96]

[VAN 85]

[VIRT98]

[ZAND99]

Matthew C. L. Schnaidt, Design, Implementation, and Testing of
MSHN's Application Resource Monitoring Library, Master’s Thesis,
Naval Postgraduate School, Monterey, California, September 1997.

Shirley Kidd and Matthew Schnaidt, Tutorial on Wrapping Calls,
Naval Postgraduate School, 1999.

Carol Sledge, David Carney, Case Study: Evaluating COTS Products
for DoD Information Systems, CarnegieMellon, SEI, June 1998.

Sonali Bhide, Private Communication, sonalib@bobcat.ent.ohiou.edu,
7 March 2000.

Laboratory for Parallel and Distributed Real-time Systems,
DeSiDeRaTa: Resource and QoS Management for Dynamic, Scalable,
Dependable Real-Time Systems, University of Texas at Arlington,
1996.

R. van Renesse and A.S. Tanenbaum, “Distributed Operating
Systems”, ACM Computing Surveys, Vol. 17, No. 4, Dec. 1985,
pp-419-470.

COTS, Vitual Town Hall Questions & Answers, www.acq-
ref.navy.mil/vth/cots.html,1998. ,

Victor C. Zandy, Barton P. Miller, Miron Livny,Process Hijacking
University of Wisconsin, 1999.

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center........ e eeecveeeeeeeeeeeeeeeseeeeeereeereeessesessssseens 2

8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox LIDIaryccceeeeiiceenieinineeiitestete st esenese e enenas 2

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code CS....... ettt e eet e see e eesaeseeeaeeeesneas 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Cynthia E. IrVINeccoumeiiiieeieeeee ettt 7

Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5000

TIMOthy LEVIN ...ttt et I3

Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5000

CPT Kendal POIK........c.oouiiiriieetrineietreecccee ettt nn 2

3903 Daleview Terrace
Chattanooga, TN 37411

103

